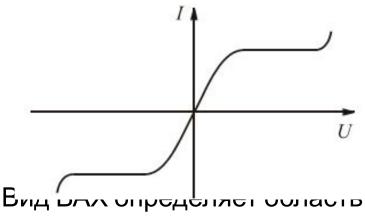
Нелинейные элементы электрической цепи при постоянных токах. Основные понятия и определения. Элементы и эквивалентные схемы простейших цепей. Расчет нелинейной цепи с последовательным, параллельным и со смешанным соединением элементов.

Нелинейные электрические цепи содержат нелинейные элементы, параметры которых зависят от тока либо напряжения. В схемах замещения цепей постоянного тока приемными элементами являются идеальные резисторы, сопротивления которых меняются при изменении тока и напряжения.

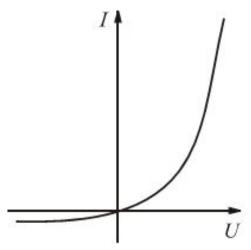
Вольт-амперные характеристики линейных элементов являются прямыми линиями, нелинейных – кривыми.


Примером нелинейного элемента (НЭ) является электрическая лампочка накаливания, сопротивление которой находится в сильной зависимости от

величины тока в ней. Все НЭ делят на две большие группы: неуправляемые и управляемые. К неуправляемым НЭ относятся лампа накаливания, бареттер, диод, газотрон. Управляемыми НЭ являются трех- и более электродные лампы, транзисторы, тиристоры.

Вольт-амперная характеристика (ВАХ) НЭ может быть

Симметричной

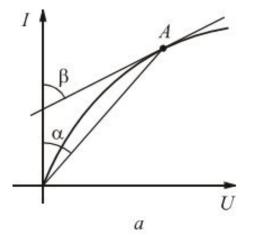

У НЭ с симметричной ВАХ сопротивление не зависит от направления тока и напряжения.

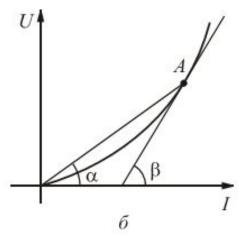
применения НЭ. Элемент с ВАХ, приведенной выше, можно использовать для стабилизации тока. Такой ВАХ обладает бареттер.

несимметричной

У НЭ с несимметричной ВАХ сопротивление зависит от направления тока и напряжения.

Выше представлена ВАХ диода, который отличает односторонняя проводимость.


Переменное сопротивление НЭ можно задать посредством ВАХ либо зависимостями статического и дифференциального сопротивлений от тока $R_{\rm cr}$


или напряжения. Статическое сопротивление характеризует НЭ в неизме $R_{\rm ct} = \frac{U}{I}$ жиме. Оно равно отношению напряжения на НЭ к току через н

Статическое сопротивление можно определить тангенсом угла α между соответствующей осью координат и прямой, соединяющей рабочую точку

с нулевой (рис. ниже). При изображении ВАХ НЭ ток и напряжение

могут быть отложе

Дифференциальное (динамическое) сопротивлет R_{π} отношению бесконечно малого приращения напряжения на НЭ к соответствующему

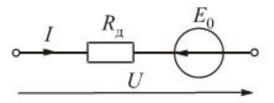
бесконечно малому приращению тока: $R_{\pi} = \frac{dU}{dI}$.

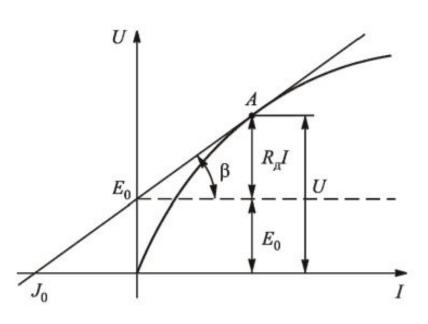
Дифференциальное сопротивление можно определить тангенсом угла

β наклона касательной к ВАХ в рабочей точке (рис. выше, а и б).

Дифференциальное сопротивление может быть отрицательным, если на

участке ВАХ при увеличении тока напряжение уменьшается либо при

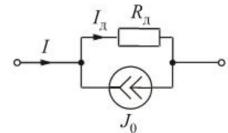

уменьшении тока напряжение увеличивается.


элементов

Расчет нелинейных цепей очень сложен. Но если рабочая точка перемещается на небольшом участке, к R_{\perp} ый можно считать практически линейным, то нелинейный резистор, схема замешения которого изображена на рис

Пример 1. Составить линейную схему замещения НЭ, ВАХ которого представлена на рис. ниже, для рабочей точки А.

Проведем касательную к рабочей точке и запишем ее уравнение. Как видно из рис., $U = R_{\pi}I + E_0$. Этому уравнению соответствует линейная схема замещения, изображенная на рис.

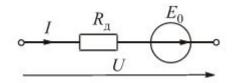


Можно составить схему замещения с источником тока. Для этого уравнение

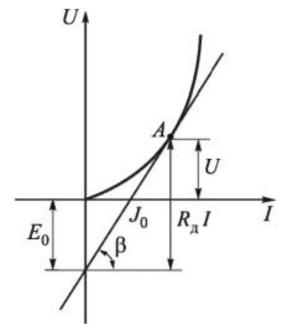
касательной разделим почленно на

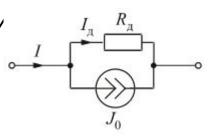
$$\frac{U}{R_{\pi}} = I + \frac{E_0}{R_{\pi}},$$
 где $\frac{E_0}{R_{\pi}} = J_0$, $\frac{U}{R_{\pi}} = I_{\pi}$.

Тогда получим уравнени $I_{\pi} = J_0 + I$, которому соответствует линеиная схема замещения, приведенная на



Пример 2. Составить линейную схему замещения НЭ, ВАХ которого представлена на рис.ниже, для рабочей точки А.


Проведем касательную к рабочей точке и запишем ее уравнение. Как видно из рис.


$$U = R_{\pi}I - E_0.$$

Этому уравнению соответствует линейная схема замещения, изображенная на рис.

Эквивалентная линейная схема замещения с источником тока приведена на ри

Вопросы для самопроверки

- 1. Чем нелинейный элемент отличается от линейного?
- 2. На какие группы делят нелинейные элементы?
- 3. Чем нелинейный элемент с симметричной ВАХ принципиально отличается от нелинейного элемента с несимметричной ВАХ?
- 4. Как можно графически определить статическое и дифференциальное
- 5. сопротивления?
- 6. Каков алгоритм составления линейной схемы замещения, эквивалентной на рабочем участке ВАХ нелинейному элементу?