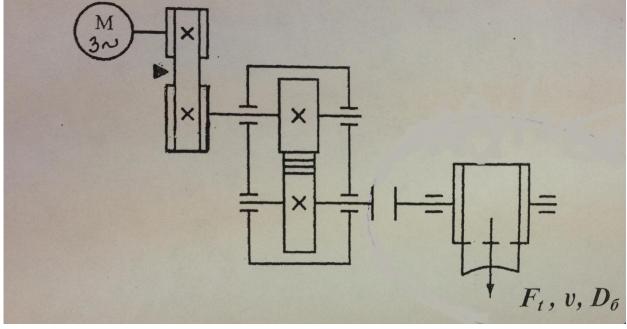

Проектирование привода ленточного конвейера

Целью курсовой работы является проектирования привода ленточного конвейера


Исходные данные:

Окружное усилия Ft=4,5

кН

Скорость конвейера v=1

M/c

Кинематическая схема привода ленточного конвейера

$$P_{pB} = F_t \cdot v$$

$$\omega_1 = \omega_{\text{MB}} = \frac{\pi \cdot n_1}{30}$$

$$n_{pB} = \frac{60 \cdot v}{P \cdot D};$$

$$P_2 = P_1 \cdot \eta$$

$$\eta_{\text{общ}} = \eta_{\text{м}} \cdot \eta_{\text{п.к}}^2 \cdot \eta_{\text{зуб}} \cdot \eta_{\text{рем}}$$

$$T_1 = \frac{P_1}{\omega_1}$$

$$P_{\text{TP}} = \frac{P_{\text{pb}}}{\eta_{\text{oбщ}}};$$

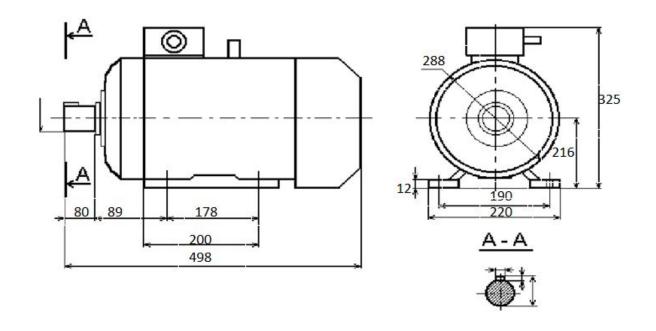
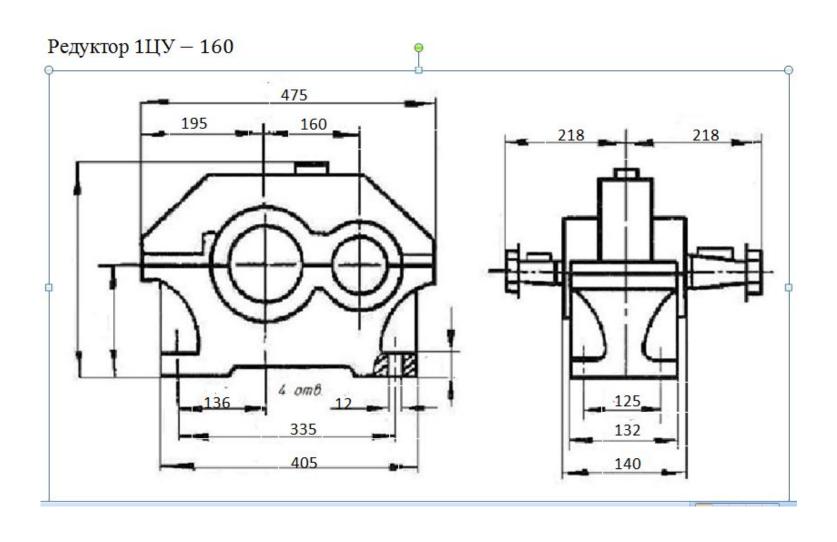
Полученные данные в ходе расчётов

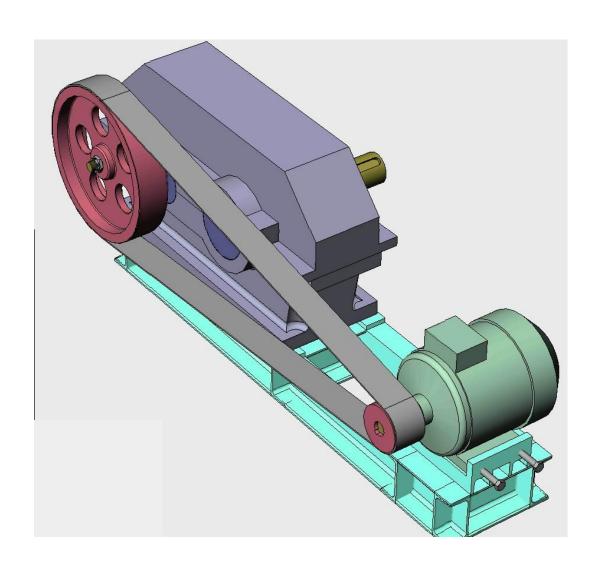
Мощность на рабочем валу машины	4,5 кН
Частота вращения рабочего вала	95 об/мин
Коэффициент полезного действия привода	0,894
Стандартную мощность электродвигателя	5,5 кВт
Передаточное число зубчатой передачи	3,15
Передаточное число ременной передачи	2,39
Частота вращения двигателя	750 об/мин

Полученные данные в ходе расчётов

Угловая	Частота	Мощность Р,	Вращающий
скорость ω,	вращения п,	кВт	момент Т, Н м
рад/с	мин ⁻¹		
$\omega_1 = 75$	$n_1 = 719$	$P_1 = 5,03$	$T_1 = 67$
$\omega_2 = 31$	$n_2 = 300$	$P_2 = 4.83$	$T_2 = 156$
$\omega_3 = 10$	$n_3 = 106$	$P_3 = 4.5$	$T_3 = 450$
$\omega_4 = 10$	$n_4 = 106$	$P_4 = 4.5$	$T_4 = 450$

Электродвигатель AИР132M8 ТУ 16-525.564-84

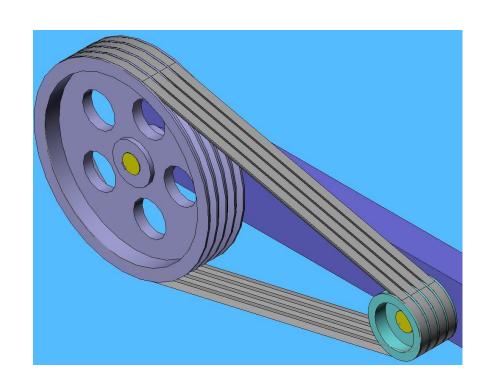




Рисунок 1.2 – Эскиз электродвигателя.

2 РАСЧЕТ И КОНСТРУИРОВАНИЕ КЛИНОРЕМЕННОЙ ПЕРЕДАЧИ

* Ременная передача относится к передачам трением с гибкой связью

*Нагрузка передается силами трения, возникающим между шкивом и ремнем вследствие натяжения ремня



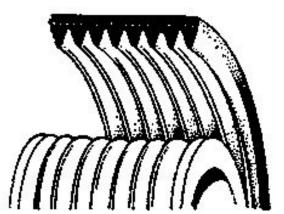
3. Клиноременная передача

Применяются для приводов общего назначения

- Обладает повышенной тяговой способностью по сравнению с плоскоременной
- Имеет меньшие габаритные размеры
- Может передавать вращение одновременно на несколько валов
- Допускают передаточное отношение 6...8 без натяжного ролика

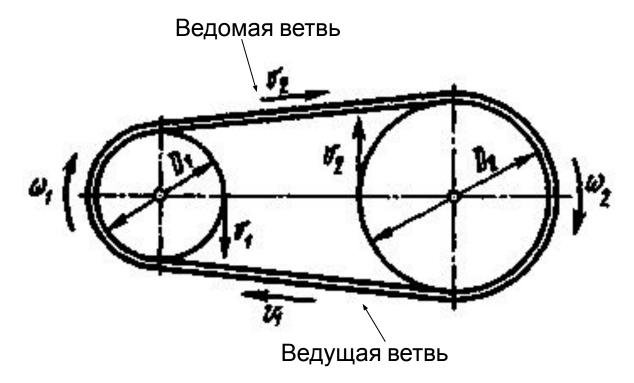
- Менее быстроходны (скорость до 30 м/с)
- Имеют более низкий КПД (на 1-2%)

Сравнение клинового и поликлинового ремней


- Самые компактные
- Работают со скоростью до 40 м/с
- Передаточные числа до 10
- Чувствительны к непараллельности валов и
- осевому смещению шкивов

- Бесконечные плоские ремни с продольными клиновыми выступами на внутренней поверхности Несущий слой выполняют в виде кордшнура из химических волокон
- Выпускают сечений К, Л, М
- Сочетают достоинства плоских (монолитность, гибкость) и клиновых (повышенное сцепление со шкивами) ремней

Ремень 4000-Л-12-ТУ 38105.763-84

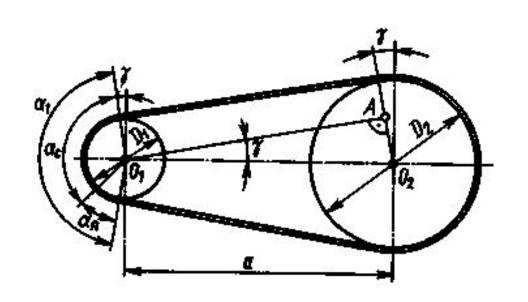

Поликлиновой ремень с расчетной длиной 4000 мм, сечением Л, с числом клиньев 12

Сравнение основных характеристик поликлинового ремня и клинового ремня

	Клиновой ремень	Поликлиновой ремень	Сравнение характеристик
1 Диаметр ведущего шкива, мм	140	100	Характеристики 1,2,3,4 влияют на габаритные размеры и исходя из этого
2 Диаметр ведомого шкива, мм	315	224	стоит выбрать поликлиновой ремень
3 Длина ремня, мм	2000	1400	
4 Межосевое расстояние, мм	584	441,3	
5 Скорость ремня, м/с	5,3	3,76	По данной характеристике стоит выбрать поликлиновой ремень
6 Сила давления на вал, Н	1580	2181	Меньшую силу давления на вал имеет клиновой ремень
7 Угол обхвата ремнём меньшего шкива, град	162	164	Предпочтительнее Будет поликлиновой ремень
8 Частота пробегов, с ⁻¹	2,65	2,69	

Кинематика ременных передач

Передаточное отношение


$$u = \omega_1/\omega_2 = n_1/n_2$$

Окружные скорости шкивов

$$V_1 = \frac{\omega_1 D_1}{2} = \frac{\pi n_1 D_1}{60}$$

$$V_2 = \frac{\omega_2 D_2}{2} = \frac{\pi n_2 D_2}{60}$$

Геометрические характеристики ременных передач

Основные геометрические характеристики

Диаметры шкивов, $D_1, D_2(d_1, d_2)$

Межосевое расстояние, а

Расчетная длина ремня, Ір

Угол обхвата на малом шкиве, $\, lpha \,$

• Длина ремня определяется как сумма длин дуг шкивов на углах обхвата и длин прямолинейных участков ремня

Клинового и поликлинового
$$l_p = 2a + \pi (d_1 + d_2)/2 + (d_2 - d_1)^2/4a$$

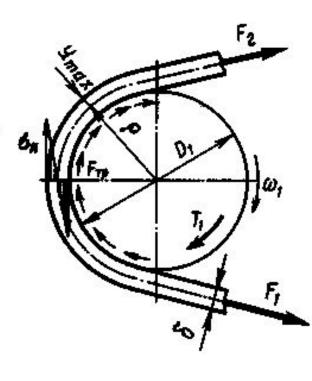
Принимается стандартное значение длины по таблице

Угол обхвата на малом шкиве в град.:

$$\alpha_1 = 180^{\circ} - \gamma^{\circ} \approx 180^{\circ} - 57^{\circ} \frac{(D_2 - D_1)}{a}$$

Для клиноременной передачи: $\alpha_1 \ge 110^0$

Силы и напряжения в ремнях


Окружная сила на шкивах
$$F_t = \frac{2 \cdot 10^3 \cdot T_1}{d_1} = \frac{10^3 \cdot P_1}{v_1}$$

Из условий равновесия ремня при передаче Т:

$$F_t = F_{mp} = F_1 - F_2$$

Соотношение натяжений ветвей ремня:

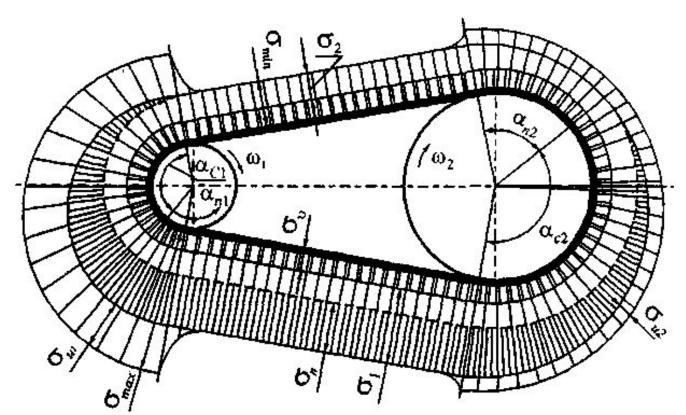
$$F_1 = F_2 e^{f\alpha}$$

Нагрузочная способность ременной передачи понижается в результате действия центробежных сил, которые уменьшают силы нормального давления ремня на шкив и, следовательно, понижают максимальную силу трения, одновременно увеличивая натяжение ветвей

$$F_2 = F_0 - \left(F_t/2\right)$$

• Предварительное напряжение в ремне от предварительного натяжения:

$$\sigma_0 = F_0/A$$


•Отношение окружного усилия к площади поперечного сечения ремня называется полезным напряжением

$$\sigma_{\Pi} = F_t/A$$

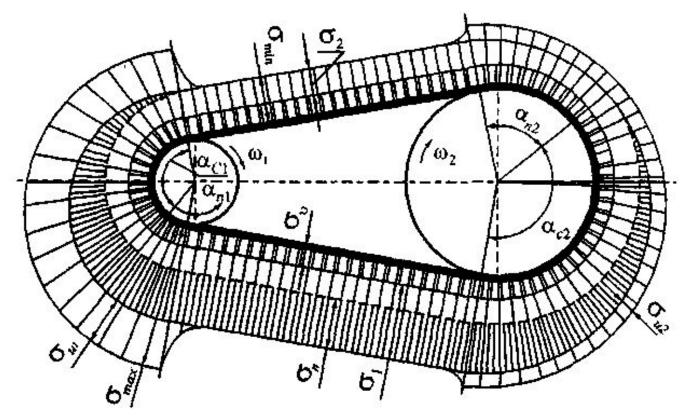
•Напряжения в ветвях ремня от рабочей нагрузки:

$$\sigma_1 = \sigma_0 + \sigma_{II}/2$$

$$\sigma_2 = \sigma_0 - \sigma_{II}/2$$

Напряжение в ремне от действия центробежных сил:

$$\sigma_{v} = \rho v^{2}$$


 $ho = 1100...1200 \kappa z \, / \, M^3 \,$ - плотность ремня

Напряжения изгиба:

$$\sigma_u = E\varepsilon = Ey_{\text{max}}/\rho \approx E\delta/D$$

Максимальные напряжения в ремне:

$$\sigma_{\text{max}} = \sigma_1 + \sigma_v + \sigma_{1u}$$

Допускаемое полезное напряжение* при $\phi = \phi_{\kappa}$

$$[\sigma_{\Pi}] = 2\varphi_{\kappa}\sigma_{0}$$

* полезное напряжение соответствует определенным условиям испытания:

 $\alpha_1 = 180^{\circ}$; $\upsilon = 10$ м/с; передача открытая горизонтальная; нагрузка равномерная, спокойная

Условие работоспособности:

$$\sigma_{\Pi} = F_{t}/A = 2F_{0}\varphi_{k}/A = 2\varphi_{k}\sigma_{0} \leq \left[\sigma_{\Pi}\right]_{p}$$

Расчетное допускаемое полезное напряжение в ремне с учетом фактических параметров передачи и условий ее работы:

$$\left[\sigma_{\Pi}\right]_{p} = \left[\sigma_{\Pi}\right] C_{\alpha} C_{V} C_{\gamma} / C_{p}$$

 $C_{\alpha}\,, C_{V}\,, C_{\gamma}\,, C_{p}\,$ - коэффициенты, учитывающие влияние соответственно угла обхвата ремнем малого шкива, скорости ремня, угла наклона передачи, характера нагрузки на тяговую способность ремня

Расчет клиноременных ременных передач по тяговой способности

Требуемое количество ремней

$$z = \frac{F_t}{A[\sigma_{\Pi}]_p C_z}$$

 C_z - коэффициент, учитывающий неравномерность распределения нагрузки между ремнями в комплекте 0,85...1

$$z = \frac{P_1 C_p}{P_0 C_\alpha C_K C_L}$$

 $P_{\scriptscriptstyle 1}$ - мощность на ведущем шкиве, кВт

 $P_{\scriptscriptstyle 0}$ - мощность, передаваемая одним ремнем, кВт

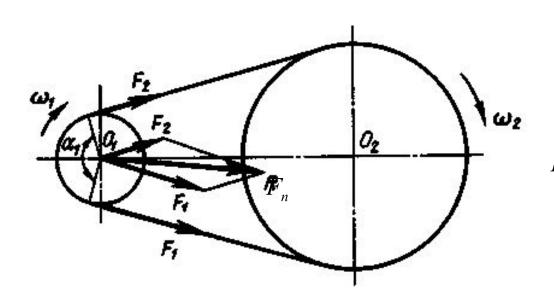
 $C_{\alpha}, C_{K}, C_{L}, C_{p}$ - коэффициенты, учитывающие влияние соответственно угла обхвата ремнем малого шкива, числа ремней в передаче, длины ремня, динамической нагрузки и режима работы

Долговечность ремня – способность сопротивляться усталостному разрушению

Частота пробегов ремня в секунду, c^{-1}

$$\lambda = \frac{v}{l_p} \le [\lambda]$$

 ${\cal V}$ - скорость ремня, м/с


 l_p - расчетная длина плоского ремня, м; для клиновых и поликлиновых передач – стандартная длина ремня

 $\left[\lambda\right]$ - допускаемая частота пробега ремня, $\,c^{-1}$

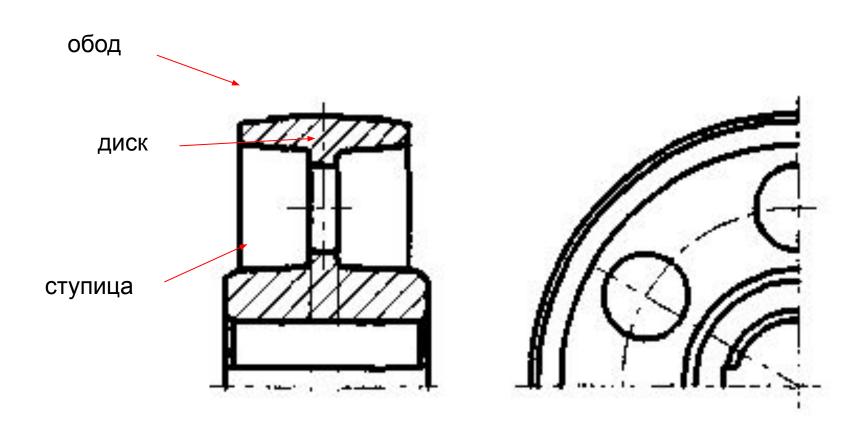
Для плоских резинотканевых и кожаных ремней $[\lambda] = 5c^{-1}$

Для клиновых, поликлиновых и синтетических плоских $[\lambda] = 10c^{-1}$

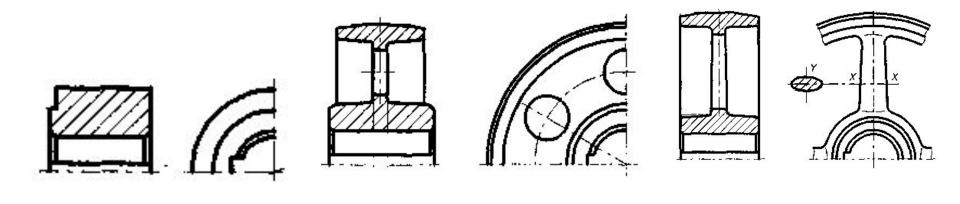
15. Нагрузка на валы и опоры

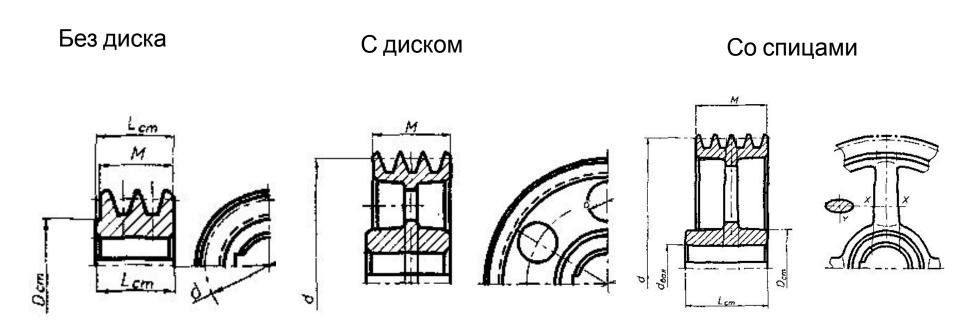
Равнодействующая натяжения ветвей:

$$F_n = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos(180^0 - \alpha_1)}$$

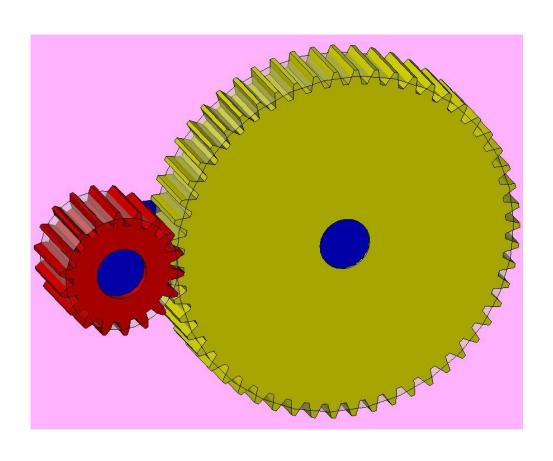

Приближенно:

$$F_n \approx 2F_0 \sin(\alpha_1/2)$$


У передач трением нагрузка на валы в 2...3 раза больше окружного усилия.


У зубчатоременных передач требуется незначительное начальное натяжение ремня, поэтому нагрузка на валы немного больше окружного усилия, что является существенным достоинством этих передач

Шкивы ременных передач


Конструкции шкивов

Общие сведения о зубчатых передачах

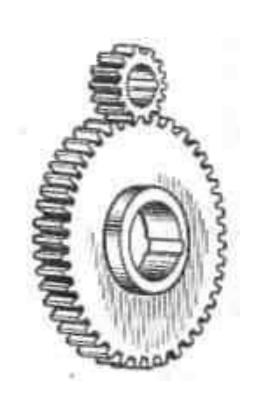
Зубчатые передачи относятся к передачам зацеплением с непосредственным контактом между ведущим и ведомыми звеньями

Достоинства

- Компактность
- Высокий КПД
- Сохраняют постоянство передаточного отношения
- Относительно небольшие нагрузки на валы и опоры
- Большая долговечность и надежность в широких диапазонах мощностей
- Простота обслуживания

- Сложность изготовления точных передач
- Возможность возникновения шума и вибраций при недостаточной точности изготовления и сборки
- Невозможность бесступенчатого регулирования частоты вращения ведомого вала

Цилиндрическая прямозубая передача


Применяют при небольших окружных скоростях (до 5 м/с), в закрытых и открытых передачах

ГОСТ 1643-81 на допуски для цилиндрических зубчатых колес и передач устанавливает 12 степеней точности

Для каждой степени точности установлены нормы кинематической точности, плавности работы и контакта зубьев колес

В машиностроении зубчатые передачи общего назначения изготовляют по 6 -9 степеням точности

Цилиндрические прямозубые: 6-й степени точности при V до 15 м/с; 7-й – до 10м/с; 8-й – до 6 м/с; 9-й – до 2 м/с

Основные кинематические характеристики

Передаточное отношение

$$i = \frac{\omega_1}{\omega_2} = \frac{n_1}{n_2}$$

Передаточное число

$$u = \frac{d_2}{d_1} = \frac{z_2}{z_1}$$

$$u = i$$

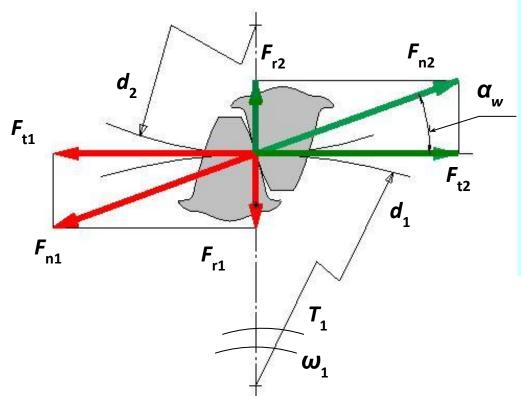
Геометрические характеристики зубчатых колес

<u>Делительными</u> называют окружности, по которым в процессе изготовления зубчатых колес производится деление цилиндрических заготовок на число частей, равное числу зубьев:

$$\pi d_1 = z_1 p$$

$$\pi d_2 = z_2 p$$

$$d_1 = p z_1 / \pi$$


$$d_2 = p z_2 / \pi$$

Шаг зубьев p=s+e толщина зубьев s ширина впадины e

Диаметр делительной окружности	d = mz
Межосевое расстояние	$a = (d_1 \pm d_2)/2 = m(z_1 \pm z_2)/2$
Высота зуба	$h = h_a + h_f = 2,25m$
Высота головки зуба	$h_a = m$
Высота ножки зуба	$h_f = m + c = 1,25m$
Радиальный зазор	c = 0,25m
Диаметр вершин зубьев	$d_a = d + 2h_a = mz + 2m = m(z+2)$
Диаметр впадин	$d_f = d - 2h_f = mz - 2 \cdot 1,25m = m(z - 2,5)$
Ширина венца	$b = \psi_{ba} a = \psi_{bd} d$

Силы в зацеплении

 $F_{\scriptscriptstyle n}$ - нормальная сила, действующая по линии зацепления

 $F_{\scriptscriptstyle t}$ - окружная сила, действующая по касательной к окружностям

 F_{r} - радиальная сила, действующая по радиусу к центру

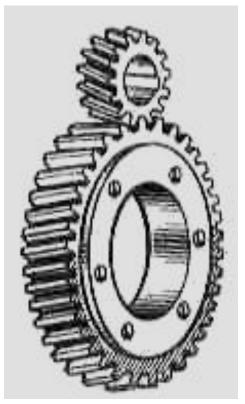
 $lpha_{\omega}$ - угол зацепления, 20 град

$$F_n = \sqrt{F_t^2 + F_r^2}$$

$$F_{t1} = F_{t2} = 2T_1/d_1$$

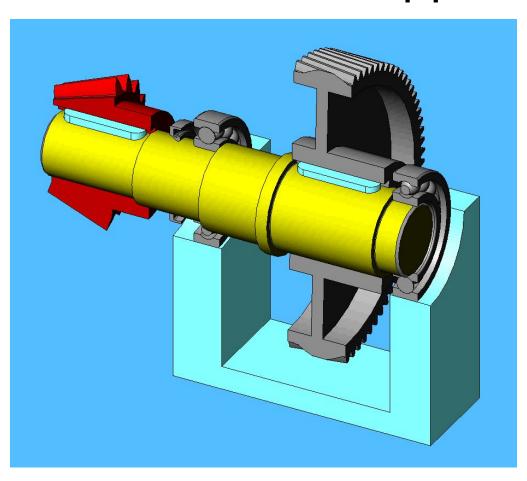
$$F_{r1} = F_{r2} = F_t tg\alpha_{\omega}$$

Цилиндрическая косозубая передача


Достоинства:

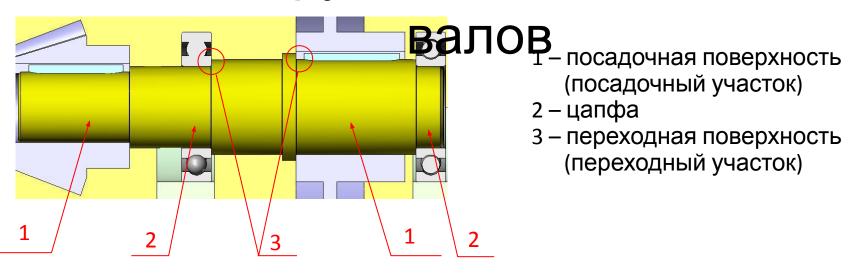
- плавность зацепления
- меньший шум
- •снижение динамических нагрузок

Недостаток:

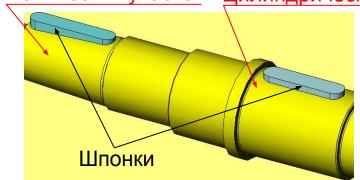


Сравнение прямозубой и косозубой

передач


порода	Прямозубая		Косоз	убая	Сравнение характеристик
	шестерня	колесо	шестерня	колесо	
1 Межосевое расстояние	180		16	0	Характеристики 1,2,3 и 4
2 Диаметр делительной окружности	72	288	77,45	242,5	влияют на габаритные размеры передачи, а следовательно и редуктора и следует выбрать косозубую передачу
3 Диаметр окружности вершин зубьев	76,5	292,5	81,45	246,5	
4 Диаметры окружности впадин зубьев	66,375	282,375	72,45	237,5	
5 Ширина зубчатого венца	75	72	67	64	
Окружная скорость зубчатых колёс	1,1		1,2		
Окружные силы зацепления	4333		4028		Нагрузка на редуктор и валы будет меньше при косозубой передаче
Радиальные силы зацепления	1577		1477		
Фактический угол наклона	0		11,11		
Модуль	2,25		2		

Расчёт быстроходного и тихоходного валов


Вал – деталь машин и механизмов, предназначенная для передачи крутящего момента и поддержания вращающихся на них деталей

Конструктивные элементы

Посадочными поверхностями называют поверхности, на которые насаживают ступицы шкивов, зубчатых колес, звездочек. Бывают цилиндрическими и коническими.

Вращающий момент от ступицы к валу и наоборот может передаваться с помощью шпоночного соединения, шлиц или посадки с натягом

Расчёт быстроходного и тихоходного валов

На валах устанавливают вращающиеся элементы: зубчатые колёса, шкивы, звёздочки и т.д. Редукторные валы рассчитывают в два этапа. На первом этапе проводят проектный расчет, в результате которого определяют длины отдельных участков вала, диаметры в характерных сечениях и приложенные к ним нагрузки. На втором этапе определяют фактический коэффициент запаса прочности в предположительно опасных сечениях.

Расчёт быстроходного и тихоходного валов

Исходные данные для конструирование

Ралов Т₁ - вращающий момент на валу

 F_{t1} - окружные силы, действующие в зацеплении;

 F_{r1}^{t1} - радиальные силы, действующие в зацеплении;

d₁ – диаметр делительной окружности зубчатого колеса;

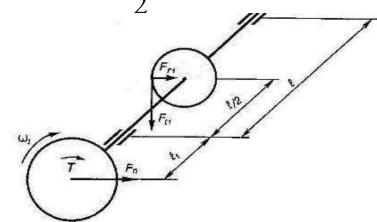
b₁ – ширина зубчатого венца зубчатого колеса;

F_{...} - сила давления со стороны клиновых ремней на вал.

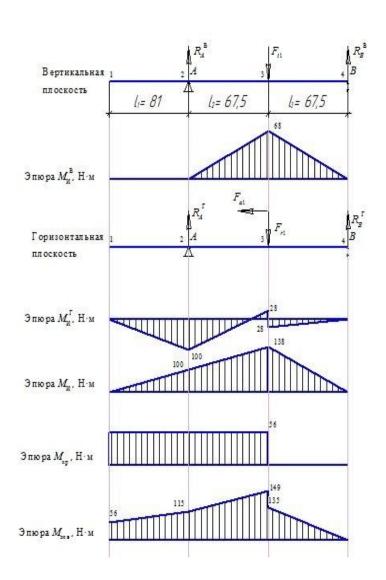
Расчёт быстроходного и тихоходного валов

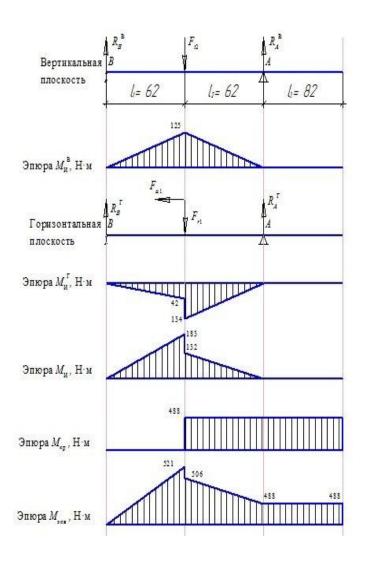
Расчетные ориентировочные геометрические размеры каждой ступени вала

$$d_M = 3 \sqrt{\frac{T}{0,2 \cdot \left[\tau_K\right]}} \qquad l_1 = \frac{B_1}{2} + 40$$

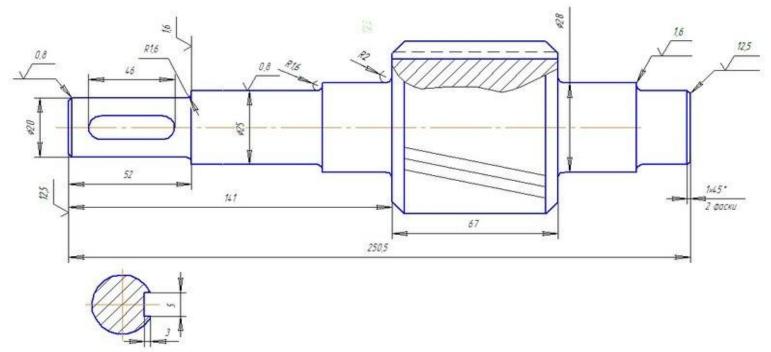

$$l_1 = \frac{B_1}{2} + 40$$

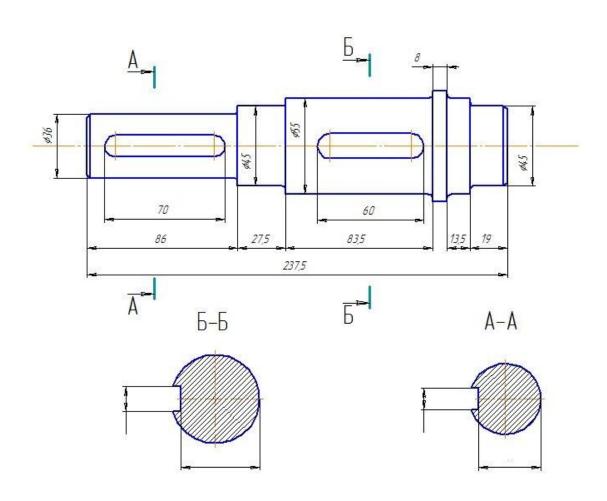
$$d_n = d_M + 2t$$


$$d_n = d_M + 2t$$
 $l_2 = l_3 = \frac{b_1}{2} + 30$


$$d_{\kappa} = d_n + 3.2r$$

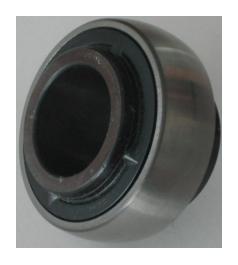
$$2d_{\kappa} \leq d_{f1}$$


Эпюры моментов действующих на вал



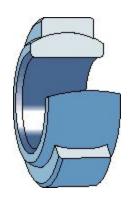
Эскиз вала с указанием основных конструктивных размеров.

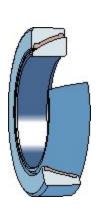
$$d \geq \sqrt[3]{\frac{M_{_{\mathfrak{I}KB}}}{0,1 \cdot \left[\delta_{u}\right]}};$$

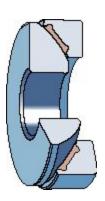

Эскиз вала с указанием основных конструктивных размеров.

Проверочный расчёт вала

Проверочный расчёт вала является уточнённым, так как учитывается характер динамической нагрузки, концентрацию напряжений, влияние абсолютных размеров вала, качество обработки поверхностей. Расчёт сводится к определению запаса прочности п. Условие прочню фт выполнено, если Требуемый коэффициент зфпасая... прочности принимается Меньшие значения относятся к приводам менее ответственных механизмов. Проверочный расчёт вала выполняется для сечений, наиболее нагруженных и имеющих концентратор напряжения (шпоночный паз, галтель, канавку).


$$n = \frac{n_{\sigma} n_{\tau}}{\sqrt{n_{\sigma}^2 + n_{\tau}^2}} \ge [n]$$





подшипники скольжения

Подшипники, работающие по принципу трения скольжения называются подшипниками скольжения

Подшипники являются опорами вращающихся осей и валов. При проектировании той или иной машины их подбирают из числа выпускаемых типоразмеров.

мы выбрали радиально – упорный шариковые подшипники типа 46305 Грузоподъемность:

$$C_0 = 14600 H$$

 $C = 26900 H$

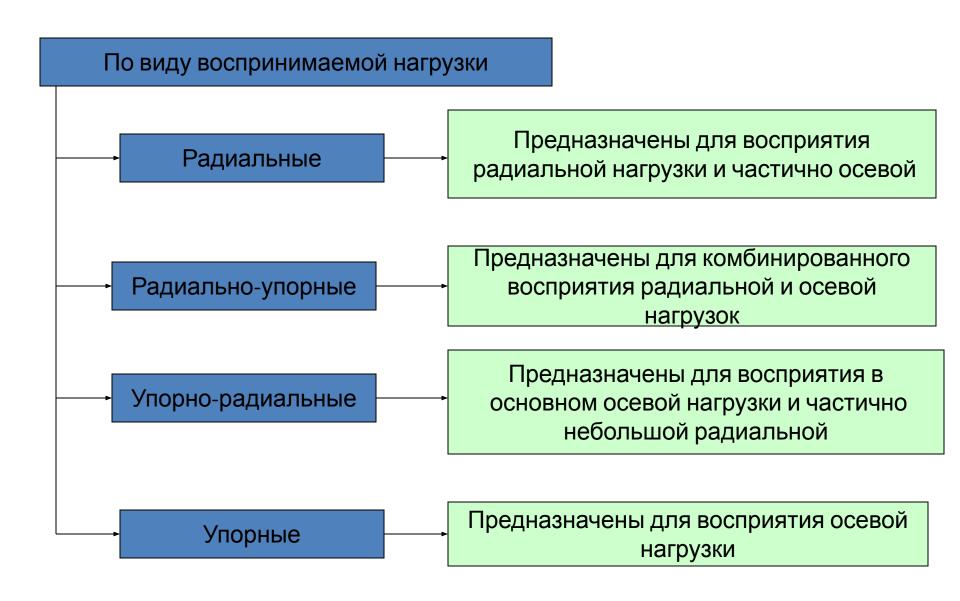
долговечность наиболее нагруженного подшипника рассчитавыется по формуле:

$$L_{ah} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^3$$

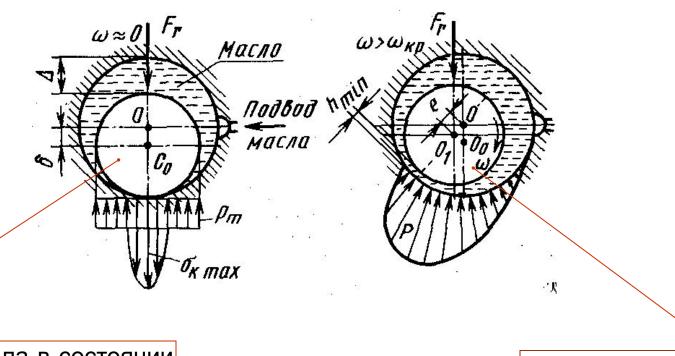
$$L_{ah} > \llbracket L_h
brace$$
 , значит подшипник подобран правильно

Достоинства:

малые габариты в радиальном направлении
бесшумность работы
хорошая восприимчивость ударных и вибрационных нагрузок
возможность применения разъемных подшипников
допускают высокую частоту вращения (100 000 об/мин и более)
возможность работы в воде и других агрессивных средах
большая долговечность в условиях жидкостного трения
применяют при повышенных требованиях к стабильности точности толожения валов;
отсутствие подшипников качения требуемых диаметров (миниатюрные и особо крупные валы).

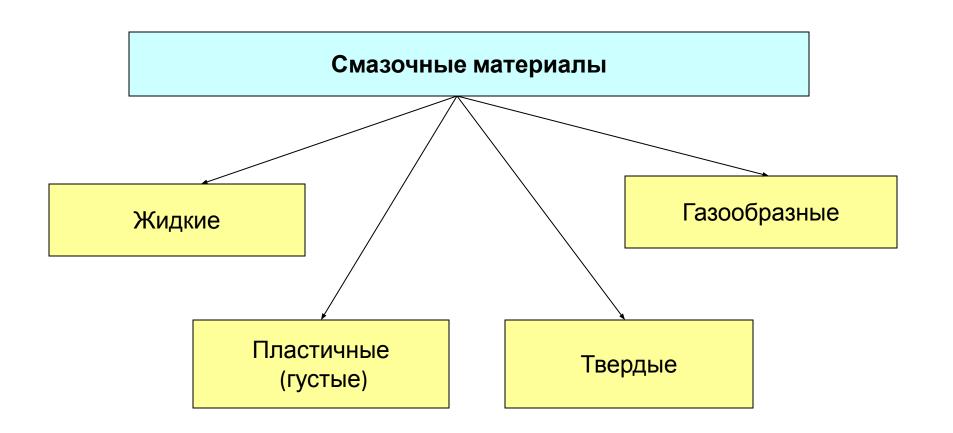

Недостатки

□ Высокие потери на трение и в связи с этим пониженные КПД; КПД 0,95 –0,99
□ Необходимость систематического наблюдения и непрерывного смазывания
 □ Тяжелонагруженные подшипники, работающие при высоких частотах вращения нуждаются в принудительном подводе под давлением смазочного материала (масла, воды и др.) для поддержания режима жидкостного трения и отвода выделяющейся теплоты
□ Подшипники с обычными маслами надежно работают до температур не выше 150 градусов
□ Неравномерный износ подшипника и цапфы
□ Применение для изготовления подшипников дорогостоящих материалов
□ Относительно большая длина в осевом направлении


Области рационального применения подшипников скольжения

Опоры тихоходных малоответственных механизмов Опоры быстроходных узлов, работающих при вибрационных и ударных нагрузках Подшипники, выполняемые по условиям сборки разъемными (опоры коленчатых валов) Опоры при стесненных радиальных габаритах Подшипники, работающие в абразивных и агрессивных средах Опоры быстроходных узлов, работающих при вибрационных и ударных нагрузках Подшипники, работающие при особо высоких частотах вращения – газовые и электромагнитные Опоры уникальных конструкций, для которых стандартный подшипник качения подобрать невозможно

Классификация подшипников:



ВИДЫ ТРЕНИЯ В ПОДШИПНИКАХ

Положение вала в состоянии покоя и при разгоне

Положение вала после разгона

СМАЗКА ПОДШИПНИКОВ

Смазка подшипников может выполнять следующие функции: уменьшать потери на трение, снижать износ рабочих поверхностей, отводить теплоту, предохранять от коррозий, снижать шум, обеспечивать герметизацию подшипниковых узлов.

Диаметры подшипников:25 и 45 мм, средний диаметр 35 мм.

Частоты вращения подшипников 300 и 95 оборотов в минуту, средняя частота вращения подшипников 200 оборотов в минуту.

Рабочая температура редуктора 60 градусов Цельсия.

По номограмме определяем, что вязкость масла при рабочей температуре подшипника должна быть 60 мм²/с.

Вязкость 60 мм²/с при рабочей температуре будет у масла, имеющего при температуре 40 градусов Цельсия вязкость 190 мм²/с.

Под эти параметры подходит масло Shell Helix 70W90, стоимостью 532 рубля за литр.

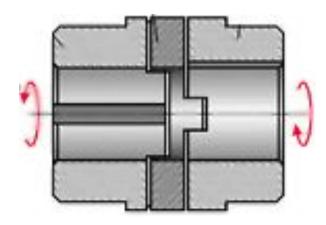
- Муфты это устройства, служащие для соединения соосных деталей, например труб, валов, стержней и т.д.
- Выбираем муфту для соединения выходного вала редуктора и вала привода конвейера между собой по назначению, номинальному крутящему моменту и диаметру выходного конца вала редуктора

Исходные данные для расчета муфты:

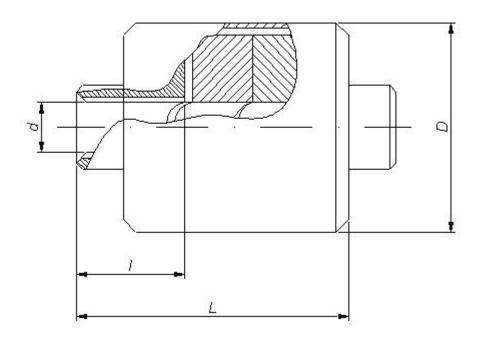
- $d_g = 36$ мм (Приложение Б3[1]-«выходной вал редуктора»1 ЦУ-200-4 12)
- $T_3 = 450 \,\mathrm{H}\cdot\mathrm{M}$ крутящий момент, передаваемый выходным валом редуктора

Расчетный крутящий момент определяется по формуле:

$$T_p = K_p T$$
; где – коэффициент режима работы;


Для пенточных конвейеров

Принимаем


$$K_p = 1,15...1,3$$

$$K_p = 1,15$$
 H·**M**

Выбираем култачисковую муфту типа 630-36-1У3 ГОСТ Р 20720-93

Эскиз кулачково-дисковой муфты.

Основные параметры муфты (ГОСТ 20720-93)

[T], H⋅M	d, mm	D, mm	L, mm	1, мм	
630	36	210	190	82	

Подбор шпоночных соединений

Подбор шпонки под муфту: $d_{_{g}} = 36$ мм. Т=450H·м.

- По таблице 1.10[3] выбираем размеры шпонки: b=10мм,h=8 мм,
- $t_1 = 5$ MM, $t_2 = 3.3$ MM, l = 70MM.
- Проверочный расчет шпонки на смятие:

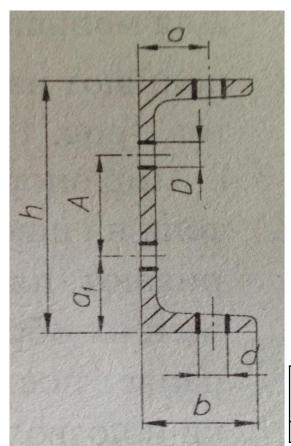
$$\sigma_{\scriptscriptstyle CM} = \frac{Q}{(h-t_1) \cdot l} \leq \sigma_{\scriptscriptstyle adm} \quad ,$$
 где - сила смятия,
$$Q = \frac{2T}{d}$$
 •
$$Q = \frac{2 \cdot 450}{0,036} = 2500 \ \ \text{H,}$$

• $\frac{2500}{(8-5)\cdot 36} = 23,48 \le 120$ M \square a.

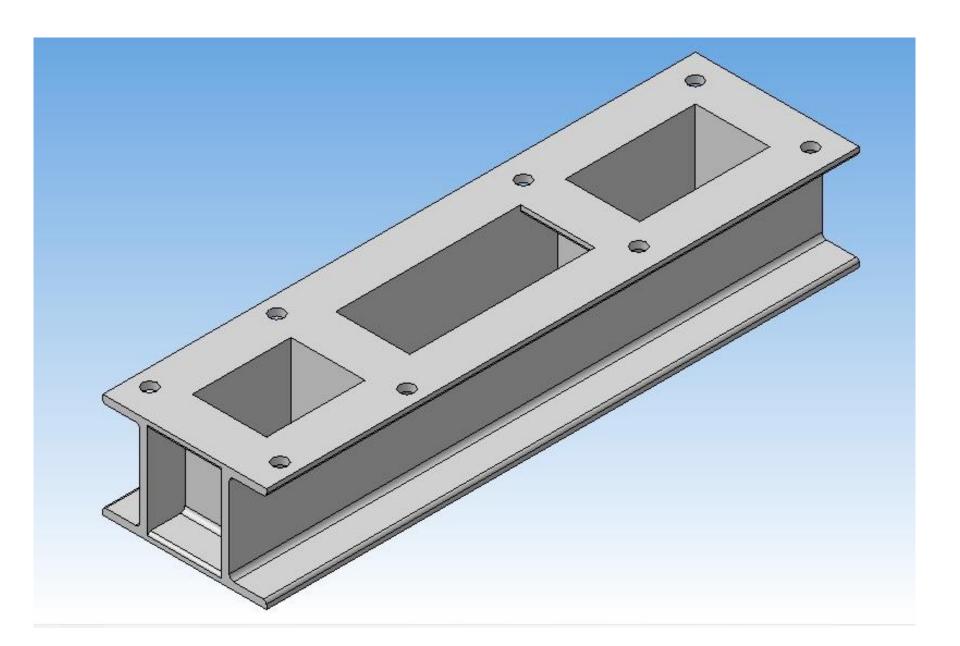
.

Расчет рамы под привод

Приводы машин, состоящие из электродвигателя и передач, устанавливают на сварных рамах или литых плитах.


При единичном производстве машин в основном применяют сварные рамы, изготовленные из листовой стали и профильного проката — швеллеров или уголков.

Конструкция и размеры рамы зависят от типов и размеров электродвигателя и редуктора.


Размер L округляется до ближайшего большего стандартного L_{φ} . Принимаем L= 1000 мм

Высоту рамы определяют в зависимости от её длины H=(0,08...0,10)L, и подбирают размер швеллера.

Принимаем швеллер №10

Номер	h	b	d	D	a	Amax	A_1
швеллера				MM			•
10	100	46	13	9	30	34	33

