Элементы химической кинетики. Основные факторы, влияющие на скорость реакции. Кинетические уравнения реакций 0, I, II порядков

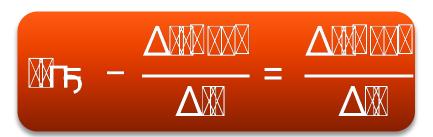
Лекция №5 курса «Общая химия»

Лектор: проф. Иванова Надежда Семёновна

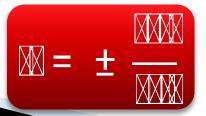
Основные понятия кинетики

Кинетика – раздел химии, изучающий механизмы химических реакций и скорости их протекания.

Скорость – основное понятие кинетики.

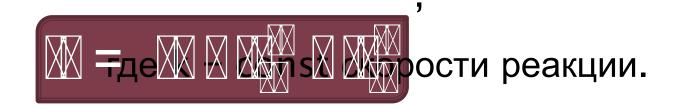

Основные понятия кинетики

Для реакции в общем виде


$$aA + bB \rightarrow xX + yY$$

скорость описывается кинетическим

уравнением:


Выражение для средней скорости

Выражение для истинной скорости

Факторы, влияющие на скорость

- **1. Природа** реагирующих веществ: определяется видом частиц (атомы, молекулы, ионы).
- **2. Концентрация** реагирующих веществ: описывается законом действующих масс (ЗДМ)

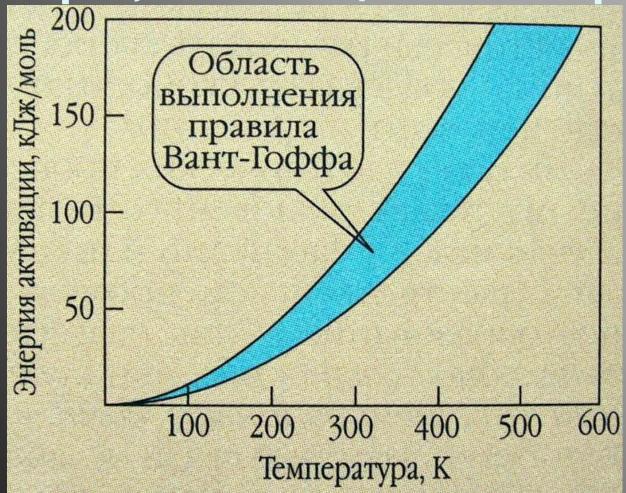
Факторы, влияющие на скорость

3. Температура: описывается правилом Вант-

Гоффа

$$\frac{\Delta \mathbb{Z}}{\mathbb{Z}} = \mathbb{Z} 10$$

Для химических реакций


 $\gamma = 2-4$, для ферментативных

y = 7-9.

Якоб Хендрик **Вант-Гофф** (1852-1911)

Факторы, влияющие на скорость

Соотношение между энергией активации и температурой, при котором выполняется правило Вант-Гоффа.

Основные положения теории активных соударений

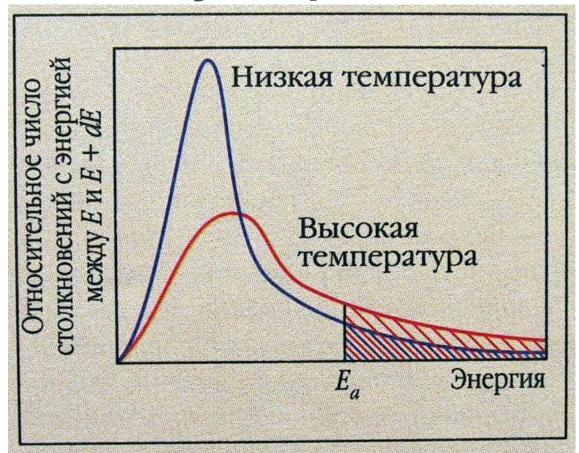
Для эффективного взаимодействия частицы должны:

- 1. столкнуться;
- **2.** иметь благоприятную ориентацию;
- 3. обладать достаточной энергией.

СВАНТЕ АВГУСТ АРРЕНИУС (1859-1927)

Энергия активации

где Еа (кДж/моль) - энергия активации.

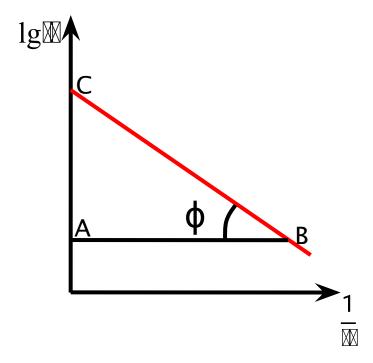

Еа – минимальная энергия частиц,

достаточная для того, чтобы частицы вступили в реакцию.

$$\ln \frac{\mathbb{Z}_{\mathbb{Z}}}{\mathbb{Z}} = \frac{\mathbb{Z}}{\mathbb{Z}} \mathbb{Z} - \frac{1}{\mathbb{Z}}$$

Уравнения Аррениуса

Повышение доли активных молекул с ростом T



При повышении температуры доля молекул, энергия которых превышает значение энергии активации, быстро растёт.

Способы расчёта Еа

- 1. По уравнению Аррениуса.
- 2. Графический

$$= - \frac{23}{23}$$

Молекулярность реакции

Число молекул реагентов, участвующих в простой одностадийной реакции, состоящей из одного элементарного акта, называется молекулярностью реакции.

Мономолекулярная реакция: C_2H_6 → $2CH_3$ ·

Бимолекулярная реакция: $CH_3 \cdot + CH_3 \cdot \rightarrow C_2H_6$

Пример относительно редкой тримолекулярной

<u>реакции</u>: 2NO + O₂ → 2NO₂

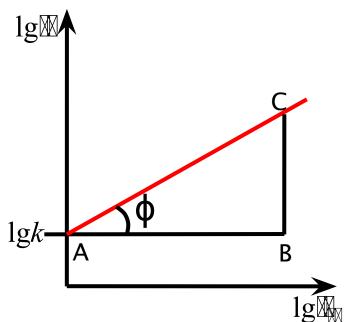
Молекулярность связана с механизмом реакции!

Порядок реакции – ...

... **Σ** всех показателей степеней концентраций реагирующих веществ в ЗДМ.

$$; \quad \Pi = a + b$$

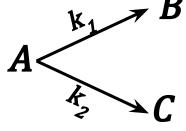
порядокражции по веществу А равен а.


Порядок реакции отражает общую зависимость скорости от концентрации и часто не совпадает с молекулярностью.

Кинетические уравнения для элементарных реакций 0, I и II порядка

П	Кинетическое уравнение в интегральной форме	Единицы измерения k	Период полупревращения
0		моль·л ⁻¹ ·с ⁻¹	$\mathbb{Z} = \frac{\mathbb{Z}}{2\mathbb{Z}}$
Ι	$\mathbb{M} = \frac{1}{\mathbb{M}} \ln \frac{\mathbb{M}}{\mathbb{M}}$	e ⁻¹	$M = \frac{\ln 2}{M}$
II		моль ⁻¹ · с ⁻¹ · л	

Методы определения П


- 1. Метод изолирования Оствальда.
- 2. Метод подбора кинетических уравнений.
- 3. Графический $tg\phi = \Pi$

Сложные реакции

- 1. Обратимые
- 2. Последовательные 🖾 🗓 🖾 💆 🖾 🖾 ... 🖾

3. Параллельные A<

4. Сопряжённые $A + B \rightarrow C$ $C + D \rightarrow F$

Сложные реакции

5. Цепные реакции – следующие друг за другом реакции, в которых участвуют

свободные радикалы.

Singapor 2006

СПАСИБО ЗА ВНИМАНИЕ!