Медицинская ферментология

Презентация лекции по программе 03.01.04 Биохимия

основной профессиональной образовательной

программы послевузовского профессионального

образования

Лекция

подготовлена

Д.М.Н.,

профессором

Медицинская ферментология (энзимология)

Существуют тысячи болезней,
 а здоровье бывает только одно
 Л.Бернс

Разделы:

- Ферментодиагностика
- Ферментопатология
- Ферментотерапия

ФЕРМЕНТЫ - простые белки

СОСТОЯТ ТОЛЬКО ИЗ ПОЛИПЕПТИДНЫХ ЦЕПЕЙ

ГИДРОЛИЗУЮТСЯ ДО АМИНОКИСЛОТ

ПЕПСИН, ТРИПСИН, УРЕАЗА

ФЕРМЕНТЫ – СЛОЖНЫЕ БЕЛКИ

БЕЛОК + КОФАКТОР (простетическая группа)

Ионы металлов -Ca²⁺, Zn²⁺, Fe²⁺, Mg²⁺, Mn²⁺, +, Cl⁻

Коферменты – органические молекулы, производные витаминов НАД, НАДН, ФАД, ФМН, перидоксальфосфат и др.

Стабилизация третичной/четвертичной структуры ферментов Связывание ферментов с субстратом Ферментативный катализ

Ферментативный катализ (перенос электронов, ионов водорода, СО₂, Химических групп: амино, ацильных и др.)

Нейлоновая модель РНКполимеразы

Каталитическая активность

Способность фермента превращать в

продукт

определенное количество молекул субстрата

в единицу времени, оставаясь

неизменным

Ферменты могут осуществлять от 1 до 10⁶ циклов превращений субстрата в секунду

1 моль трипсина 100 цикл/сек, глюкозоксидаза – 17 000 цикл/сек, карбоангидраза – 600 000 цикл/сек

ингибиторы ферментов

Соединения, которые снижают каталитическую активность ферментов

Ингибирование

обратимое необратимое

активность
фермента
восстанавливается

не
восстанавливается

ингибиторы ферментов

КОНКУРЕНТНЫЕ

НЕКОНКУРЕНТНЫЕ

СВЯЗЫВАЕТСЯ С АКТИВНЫМ ЦЕНТРОМ ФЕРМЕНТА СВОЙ УЧАСТОК СВЯЗЫВАНИЯ НА МОЛЕКУЛЕ ФЕРМЕНТА

↓ СКОРОСТЬ КАТАЛИЗА, СНИЖАЯ ДОЛЮ МОЛЕКУЛ ФЕРМЕНТА, СВЯЗЫВАЮЩИХ СУБСТРАТ ↓ СКОРОСТЬ КАТАЛИЗА, ИЗМЕНЯЯ СТРУКТУРУ АКТИВНОГО ЦЕНТРА ФЕРМЕНТА

Международная единица активности

МЕ - КОЛИЧЕСТВО ФЕРМЕНТА, КОТОРОЕ КАТАЛИЗИРУЕТ ПРЕВРАЩЕНИЕ 1 МКМОЛЯ СУБСТРАТА ИЛИ ПОЛУЧЕНИЕ 1 МКМОЛЯ

ПРОДУКТА В МИНУТУ В СТАНДАРТНЫХ ОПТИМАЛЬНЫХ УСОВИЯХ

1 кат. =
$$6 \cdot 10^7 \, \text{ME}$$

1 ME =
$$16.67 \cdot 10^{-9}$$
 кат.

Единица активности в системе СИ – катал (кат.) – количество фермента, которое катализирует превращение 1 моля субстрата или получение 1 моля продукта в секунду

Значение ферментов

- Каталитическая функция
- Регуляторная функция

Ферменты обладают высокой эффективностью, экономичностью, рациональностью, ювелирной точностью результатов работы в микропространстве клеток.

 Защитная функция -обезвреживание эндотоксинов и ксенобиотиков. Область исследования - ксенобиохимия

Ферменты участвуют во всех биологических процессах

Нарушение метаболизма, вызванное заболеванием, приводит к изменению концентрации соответствующих ферментов в биологических жидкостях

Определение активности ферментов в сыворотке

крови и моче является незаменимым орудием в диагностике и мониторинге целого ряда заболеваний

Значение энзимодиагностики

Известно около 20 тестов, основанных на количественном определении активности ферментов (и изоферментов), главным образом в крови (реже в моче), а также в биоптатах. В практическом плане энзимологические тесты должны помогать в ранней постановке и дифференциации диагноза, информировать о возможном исходе болезни.

Энзимодиагностика

- постановка диагноза заболевания (или синдрома) на основе определения активности ферментов в биологических жидкостях человека
- В особую группу выделяются иммуноферментные диагностические методы, состоящие в применении антител, химически связанных с каким-либо ферментом, для определения в жидкостях веществ, образующих с данными антителами комплексы антиген антитело.

Диагностическая энзимология достигла огромных успехов, помогая врачу не только в постановке правильного диагноза и выяснения степени тяжести болезни, но и в определении правильности избранного метода лечения

Изменение количества фермента в крови

- Гиперферментемия
- нарушение проницаемости клеточных мембран (пример воспалительный процесс)
- лизис клеток (цитолиз) при действии разных факторов (токсины, гипоксия, недостаток АТФ и др.)
 - клеточная пролифирация (опухоль)

Изменение количества ферментов

- Гипоферментемия
- генетически обусловленная (первичная)
- нарушение синтеза фермента (вторичная)
- нарушение функций органа, синтезирующего фермент (например, печень)

Разделение ферментов по месту синтеза и выполнения функции

- Секреционные
- Индикаторные
- Экскреционные

Оценка ферментативных соотношений в сыворотке с позиции данной классификации используется для диагностики и дифференциальной диагностики патологии органов и тканей.

СЕКРЕЦИОННЫЕ ферменты

Ферменты, синтезируемые клетками органов и тканей, поступающие в кровь, где и выполняют свои специфические функции (ферменты свертывающей системы крови, холинэстераза)

При патологии в органах и тканях синтез этих ферментов нарушается и уровень в сыворотке крови снижается (пример, снижение активности холинэстеразы при заболеваниях печени печени)

Клеточные (индикаторные) ферменты

Ферменты, синтезируемые клетками органов и тканей и выполняющие функции в этих клетках (АЛТ, АСТ, ГЛДГ и др).

Количество их в крови зависит от

- внутриклеточной локализации фермента
- проницаемости клеточных мембран
- усиления клеточной пролифирации
- наличия и степени цитолиза клеток

ПРИ ПАТОЛОГИИ УРОВЕНЬ ЭТИХ ФЕРМЕНТОВ В СЫВОРОТКЕ КРОВИ УВЕЛИЧИВАЕТСЯ (ПРИМЕР, ПЕЧЕНЬ)

Экскреционные ферменты

- Ферменты, синтезирующиеся клетками желез ЖКТ, или, в частности, клетками внутри- и внепеченочных желчных протоков (ЩФ, ГГТ, ЛАП)
- При патологии (например, холестазе)
 уровень этих ферментов в сыворотке крови повышается.

Оценка ферментативных соотношений в сыворотке с позиции данной классификации используется для диагностики и дифференциальной диагностики патологии органов и тканей.

Принципы изменения концентрации различных видов ферментов Печень кровь желчь печень кровь

ЖЕЛЧЬ ПРИ ПАТОЛОГИИ **B HOPME**

I – секреционные ферменты (холинэстераза)
II,III – индикаторные ферменты (аминотрансферазы,сорбитдегидрогеназа)
IV – экскреционные ферменты (щелочная фосфатаза)

Диагностическая ценность ферментных исследований

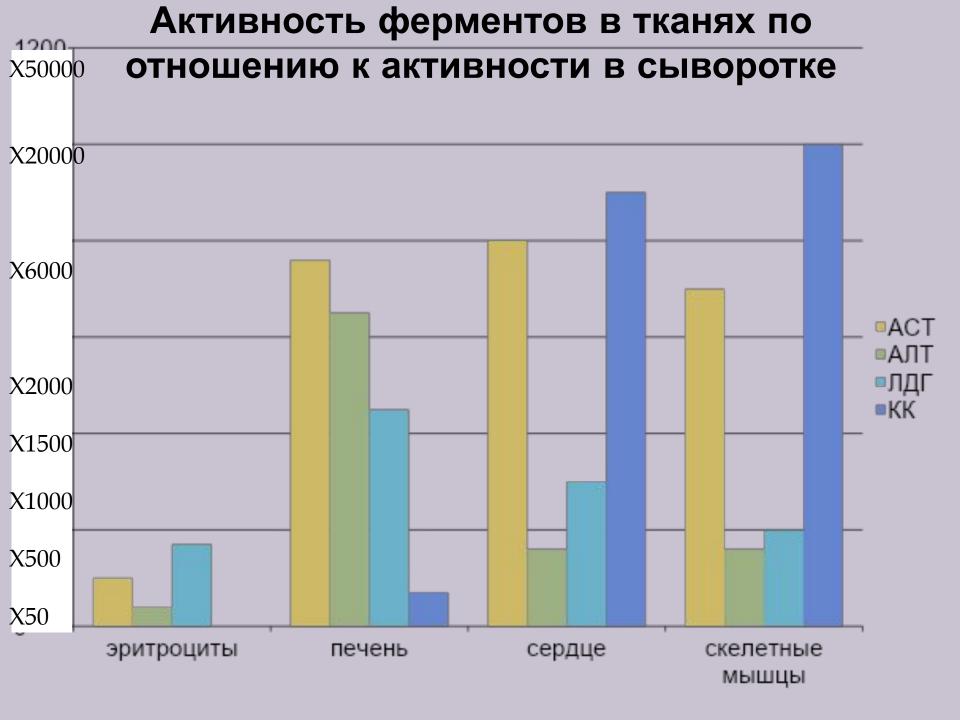
Диагностическая ценность ферментных проб неоспорима. но несколько снижается (интерференция показателей) в связи с отсутствием

- специфичности сдвигов ферментативной активности
- органной принадлежности ферментов
- На ферментативную активность оказывает

влияние физиологическое состояние, физическая активность, возраст, травма, прием

Подходы к увеличению информативности исследования ферментов в диагностике

- 1. Органная специфичность
- 2. Органоидная специфичность
- з. Создание ферментных спектров, характерных для определенной патологии
- 4. Исследование изоферментов
- 5. Расчет ферментных коэффициентов
- 6. Создание ферментной карты, учитывающей биологические и патологические вариации ферментативной активности
- 7. Комплексное исследование с применением расчетных алгоритмов

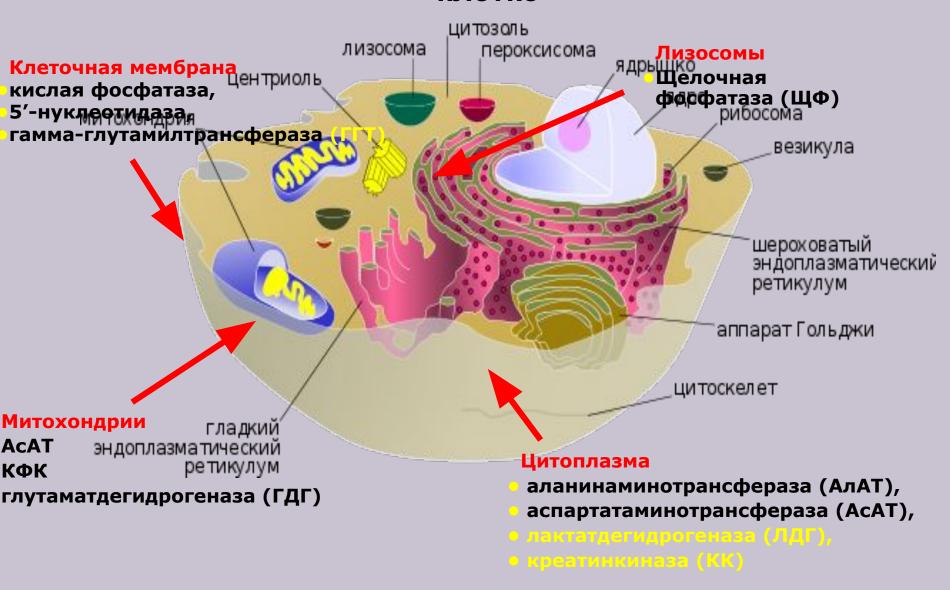

Органная специфичность

- Кардио специфические (КФК)
- Печеночно специфические (АЛТ, ГГТ, гистидаза)
- Ферменты костной ткани (ЩФ)

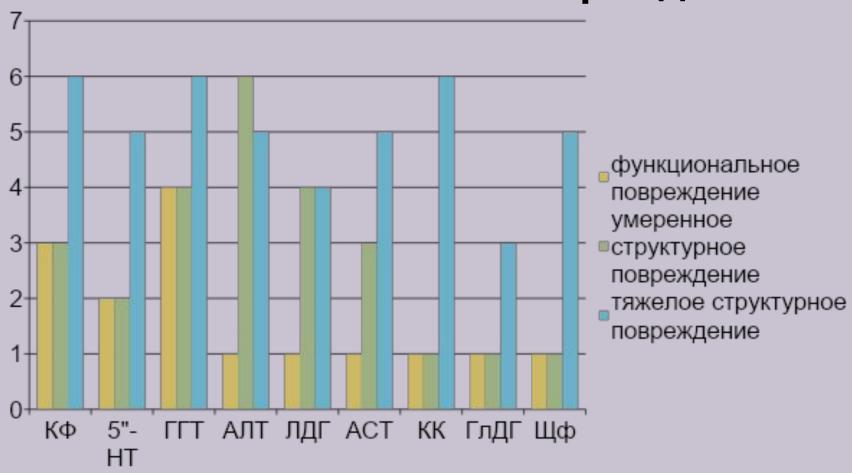
АКТИВНОСТЬ ФЕРМЕНТОВ В НЕКОТОРЫХ ТКАНЯХ ЧЕЛОВЕКА

(МИКРОМОЛЬ СУБСТРАТА/ МИН/ Г СЫРОЙ МАССЫ ТКАНЕЙ)

НАЗВАНИЕ ФЕРМЕНТА	ПЕЧЕН Ь		СКЕЛЕТНА Я МЫШЦА	ЭРИТРОЦИТ Ы
АСПАРТАТАМИНОТРАНСФЕР АЗА	96	62	36	0,8
АЛАНИНАМИНОТРАНСФЕРАЗ А	60	3	3	0,1
ГЛУТАМАТДЕГИДРОГЕНАЗА	60	1	0,5	0,01
ЛАКТАТДЕГИДРОГЕНАЗА	156	124	147	37
КРЕАТИНКЕНАЗА	0,7	350	2030	0,01
АЛЬДОЛАЗА	6	5	48	1


Органоидная специфичность ферментов

- Локализация ферментов в определенных компарментах клетки


Определение активности ферментов и оценка результата в соответствии с локализацией ферментов в клетке имеет значение в диагностике:

- мембранные (аденилатциклаза)
- цитозольные (АЛТ)
- лизосомальные
- митохондриальные (АСТ)

Примеры различной локализация ферментов в клетке

Относительное повышение активности ферментов в сыворотке как маркер степени клеточного повреждения

Создание ферментного спектра патологии

■ ОТНОСИТЕЛЬНОЕ ИЗМЕНЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ В СЫВОРОТКЕ ПРИ ОСТРОЙ ЗАГРУДИННОЙ ИЛИ АБДОМИНАЛЬНОЙ БОЛИ

ПАТОЛОГИЯ	ИЗМЕНЕНИЯ АКТИВНОСТИ ФЕРМЕНТОВ В СЫВОРОТКЕ
ИНФАРКТ МИОКАРДА (средних	KK
размеров)	>>АсАТ>АлАТ>>амилаза>>ГлДГ
ОСТРАЯ ПРАВОЖЕЛУДОЧКОВАЯ НЕДОСТАТОЧНОСТЬ	АсАТ≈ АлАТ≈ ГлДГ >>КК >>амилаза
ЭМБОЛИЯ ЛЕГОЧНОЙ АРТЕРИИ	АлАТ >AcAT >ГлДГ >>КК >>амилаза
ПЛЕВРИТ	Нет повышения активности ферментов
ОККЛЮЗИЯ СОСУДОВ БРЮШНОЙ ПОЛОСТИ	АсАТ ≈ АлАТ > амилаза > ГлДГ > КК
ОСТРЫЙ ПАНКРЕАТИТ	амилаза >>АлАТ >АсАТ ≈ГлДГ >>КК
ПЕЧЕНОЧНАЯ КОЛИКА	АлАТ > AcAT > ГлДГ >амилаза >>KK
ПОЧЕЧНАЯ КОЛИКА	Нет повышения активности ферментов
ШОК	КК >>AcAT > АлАТ > ГлДГ >амилаза

Изоферменты

Множественные формы энзиматическиактивных белков, кодируемые самостоятельным геном, находящиеся не только в отдельных органах одного и того же организма, но и в различных частях одной и той же клетки.

Изоферменты имеют идентичную каталитическую активность, но отличаются рядом физико-химических свойств, поведением в электрическом поле, неодинаковой степенью воздействия ингибиторов.

РАСПРЕДЕЛЕНИЕ ИЗОФЕРМЕНТОВ ЛДГ В РАЗЛИЧНЫХ ТКАНЯХ ЧЕЛОВЕКА

	ИЗОФЕРМЕНТЫ ЛДГ				
СЕРДЦЕ	55	33	8	2	2
почки	41	42	13	3	1
ЭРИТРО ЦИТЫ	41	44	10	3	2
мозг	23	25	30	17	5
ПЛАЦЕН ТА	12	18	15	30	25
ВИЛОЧК ОВАЯ ЖЕЛЕЗА	10	11	30	28	21
СКЕЛЕТ НЫЕ МЫШЦ Ы	4	11	17	16	56
ПЕЧЕНЬ	1	4	11	17	67
НАДПО ЧЕЧНИК И	3	20	75	-	2

Изменения в индикаторах с момента возникновения инфаркта миокарда

Тест	Начало приема	Пик подъема	Возвращение к
			норме
KK	4-6 час	24 час	3-4 дня
KK-MB	4 час	18 час	2 дня
KK-MB2	1-6 час	4-8 час	12-48 час
ACT	8 час	24-28 час	4 дня
лдг	24 час	3 дня	8-9 дней
ЛДГ-1	24 час	3 дня	12 дней
Легкая цепь миозна	4 час	-	10-12 дней
Тропонин Т	1-6 час	10-20 час	5-14 дней
Тропонин 1	3-6 час	18-20 час	5-7 дней
Миоглобин	1.5 час	6 час	34 час
Гликогенфорилаза ВВ	2 час	-	24 час

Расчет ферментных коэффициентов

Название соотношения/коэффициента	показатель			
Де Ритиса				
Воспалительный тип аст/алт	≤1			
Некротический тип аст/алт	≥1			
АСТ+АЛТ/ГлДГ				
Метастазы и печень	≤10			
Механическая желтуха	5-20			
В случае острого начала цирроза печени и хронического гепатита	30-40			
Холестатический гепатоз	40-50			
Острый вирусный гепатит	≥50			
Острый алкогольный гепатит				
ЛДГ/АСТ				
Гемолитическая желтуха	≥12			
Гепатоцеллюлярная желтуха	≥12			
ГГТ/АСТ				
Активный вирусный гепатит				
Токсический гепатит	≤1			
Хронический персистирующий гепатит				
Хронический гепатит				
Острый алкогольный гепатит	1-3			
Цирроз печени	2.6			
Алкогольный цирроз	3-6			
Недавняя обструктивная желтуха				
Биллиарный цирроз	>/			
Длительная обструктивная желтуха	≥6			
Рак печени/метастазы в печень				

Диагностическая карта ферментной активности

ЩЕЛОЧНАЯ ФОСФОТАЗА биологические вариации

ЩЕЛОЧНАЯ ФОСФОТАЗА аналитическая вариация

Интерференция ферментов

При оценке уровня изменения ферментного показателя следует учитывать факторы, которые могут исказить истинную картину

- Процедура взятия и транспортировки материала
- Хранение исследуемого материала
- Период полураспада фермента
- Влияние проводимой терапии

Период полураспада ферментов

ФЕРМЕНТ (сокращ.)	ФЕРМЕНТ	ПЕРИОД ПОЛУРАСПА ДА
-	АМИЛАЗА	3 - 6 ч.
АлАТ (ГПТ)	АЛАНИНАМИНОТРАНСФЕРАЗ А	47 ± 10 ч.
ΑςΑΤ (ΓΟΤ)	АСПАРТАТАМИНОТРАНСФЕРА ЗА	17 ± 5 ч.
ΓΓΤΦ (ΓΓΤΠ)	ү-ГЛУТАМИЛТРАНСФЕРАЗА	3 - 4 дня
ГЛДГ	ГЛУТАМАТДЕГИДРОГЕНАЗА	18 ± 1 ч.
Π Д Γ_1 (ГБД Γ)	ЛАКТАТДЕГИДРОГЕНАЗА (1)	113 ± 60 ч.
ЛД Γ_5	ЛАКТАТДЕГИДРОГЕНАЗА (5)	10 ± 2 ч.
ХЭ	ХОЛИНЭСТЕРАЗА	Около 10 суток
ЩФ	ЩЕЛОЧНАЯ ФОСФАТАЗА	3 - 7 суток

Фибротесты

 В 2007 ФиброТест признан Миздравом Франции как альтернативный биопсии печени, затем одновременно тест внедрен во многих странах мира, в том числе России (Инвитро)

Фибротесты

- Новые уникальные, неинвазивные тесты для диагностики:
- стадий фиброза печени, стеатоза, стеатогепатита
- активности некровоспалительного процесса в печени
- Тесты характеризуются различной чувствительностью, специфичностью, информативностью, диагностической ценностью
- Альтернатива биопсии печени

Биомаркеры для фибротестов

Разнообразие тестов определяется сочетанием следующих основных биомаркеров:

- количество тромбоцитов
- активность ферментов АСТ, АЛТ, ЩФ, ГГТП,
 - протромбиновое время
 - аполипопротеин А-1
 - холестерин
 - альбумин
 - альфа-2-макроглобулин

Технология

- Определение биомаркера в сыворотке крови, каждый из которых является индикатором гепатита, принятыми методами
- Использование математических формул, которые для получения результата теста независимо проверяют каждый параметр
- Алгоритм включает переменные возраста, веса, роста и пола

Наиболее принятые комплексные тесты

ФиброТест (ФиброТест, АктиТест)

ФиброМакс (ФиброТест, СтеатоТест,

АктиТес, АшТест, НешТест)

Фибро Тест и Фибро Макс

	ФиброТест	ФиброМакс
Альфа-2-макроглобу.	лин +	+
Гаптоглобин	+	+
Аполипопротеин А-1	+	+
ΓΓΤ	+	+
Общий билирубин	+	+
АЛТ	+	+
ACT		+
Глюкоза		+
Триглицериды		+
Общий холестерин		+

Область применения фибротестов

- Хронический гепатит С
- Хронический гепатит В
- Хронический гепатит С или В с коинфекцией ВИЧ
- Алкогольное заболевание печени (стеатоз, стеатогепатит)
- Стеатоз и неалкогольный стеатогепатит (диабет,
- избыточный вес, гипертриглицеридемия, гиперхолестеринемия, повышенное АД)
- Некровирусная активность

Ферментопатология

Из более чем двух тысяч наследственных болезней человека молекулярный механизм развития выяснен только у двух - трех десятков. Чаще всего развитие болезни непосредственно связано

с наследственной недостаточностью или полным отсутствием синтеза единственного фермента в организме человека.

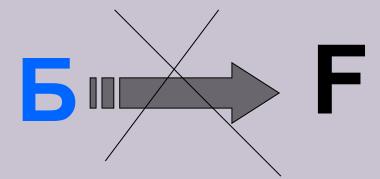
Ферментопатология мукополисахаридоз

ФЕРМЕНТОПАТОЛОГИЯ

Первичные (наследственные, классические) ферментопатии

Патогенез І

- Накопление субстрата
- Образование необычных метаболитов
- Интоксикация субстратом или метаболитами и нарушение функции органов и систем


Механизмы развития молекулярных болезней

Ферментопатии

- Накопление субстрата (галактоземия, гликогенозы)
- Уменьшение продукта
- (агликогенозы)

Протеинопатии

Серповидно-клеточная анемия, Первичные иммунодефициты

Патогенез II

- уменьшение продуктов реакции
- нарушение синтеза биологически активных веществ

Перспективы диагностики – генетическое типирование болезней, т.е. расшифровка генетического кода (предположительная стоимость процедуры к 2014г. -14000 долларов)

Энзимопатология-вторичные энзимопатии

- Регуляторные (аллостерические)
- Алиментарные (недостаток витаминов, аминокислот)
- Токсические (интоксикация, вирусы, тяж. металлы –тиоловые яды, бактерии)
- Метаболические (рН)

Энзимотерапия

Применение ферментов

- Ускорение отторжения поврежденных тканей – протеолитические ферменты
- Лизирование эксудатов,
 деполимеризованных компонентов
 межклеточного матрикса –лидаза
- Улучшение тока межклеточной жидкости гиалуронидаза
- Возмещение дефицита –пищеварительные и др. ферменты

Энзимотерапия

Применение ингибиторов ферментов

- Статины
- Ингибиторы АПФ
- Ингибиторы протеолитических ферментов (контрикал)

Системная энзимотерапия

Системная энзимотерапия – кооперативное терапевтическое воздействие целенаправленно составленных смесей ферментов растительного и животного происхождения.

Оказывая влияние на ключевые патофизиологические и патобиохимические процессы в организме, препараты системной энзимотерапии обладают противовоспалительным, противоотечным, фибринолитическим, иммуномодулирующим действием.

Биотехнологии на службе энзимотерапии

- Иммобилизация ферментов
- Повышение биодоступности
- Пролангирование действия за счет получения кишечно-растворимых форм и форм, гидролизующихся только во время всасывания

