Выявить ферменты с аллостерической регуляцией можно, изучая кинетику этих ферментов.

Эти ферменты не подчиняются законам Михаэлиса-Ментен, они имеют характерную **S-образную кривую зависимости скорости реакции от концентрации субстрата**.

S-образная кривая зависимости скорости реакции от концентрации субстрата

Впервые S-образные функции для насыщения были

получены в 1909 году (А. Хилл)

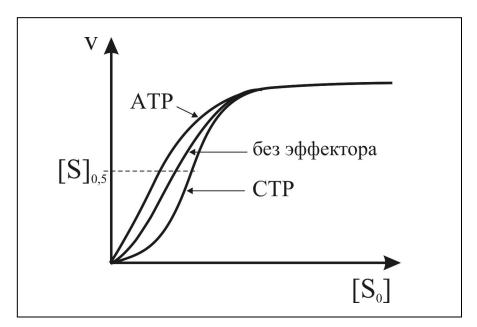
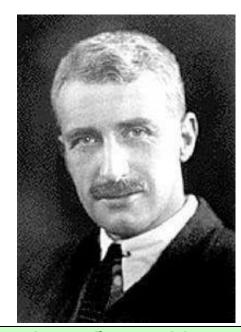
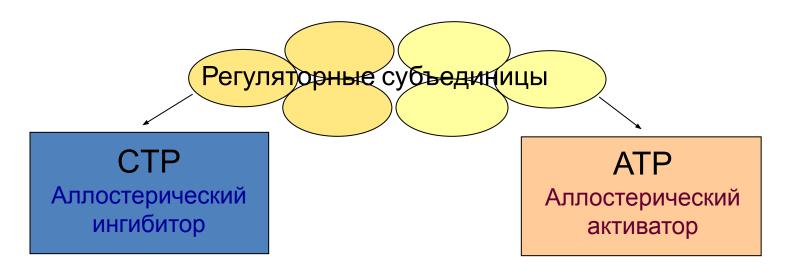




График зависимости скорости реакции от концентрации субстрата в виде S-образной кривой на примере АКТ-азы: без эффектора, с ATP, с CTP. Субстрат – аспартат.

Арчибальд Хилл
1886-1977
Английский физиолог
Нобелевская премия по
физиологии и медицине
1922 г.

Работа регуляторных субъединиц АКТ-азы

Протекание реакции во времени приводит к появлению CTP – конечного продукта цепи. По мере накопления CTP и его связывания с ферментом сродство к субстратам снижается и фермент включается в работу только при гораздо больших концентрациях субстрата. ATP конкурирует с CTP и может устранять его ингибирующее действие. Регуляция является обратимой и при изменении в клетке концентрации ATP или CTP скорость работы фермента изменяется.

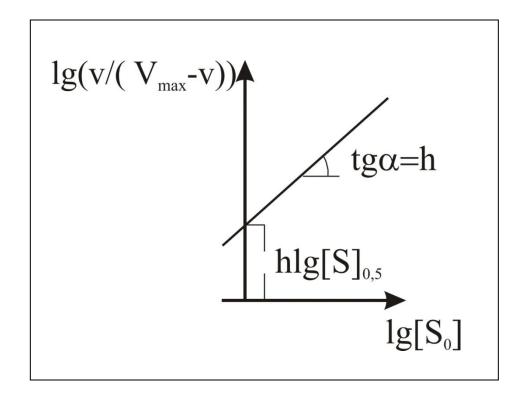
Таким образом АКТ-аза обеспечивает постоянное присутствие в клетке нужных количеств СТР.

Кооперативное связывание

Аллостерические ферменты обладают свойством кооперативности: взаимодействие эффектора с аллостерическим центром вызывает последовательное кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и к изменению сродства фермента к субстрату, что снижает или увеличивает каталитическую активность фермента.

Коэффициент Хилла h – безразмерная величина, характеризующая кооперативность связывания лиганда ферментом

$$Y = \frac{[L]^{h}}{[L]_{0,5}^{h} + [L]^{h}}$$


Y – степень насыщения, [L] – равновесная концентрация лиганда и [L]_{0,5} – равновесная концентрация лиганда, при которой Y=0,5 от максимального насыщения.

$$v = V_{max} \frac{[S_0]^h}{[S]_{0,5}^h + [S_0]^h}$$

 V_{max} – максимальная скорость при $S_0 \to \infty$, $[S]_{0,5}$ – концентрация субстрата при половине максимальной скорости, которая входит в уравнение вместо константы Михаэлиса K_{M} .

Графическое определение коэффициента Хилла

$$\lg(v/(V_{max}-v)) = h \lg[S_0] - h \lg[S]_{0,5}$$

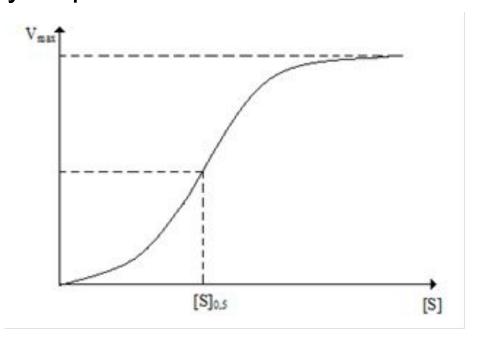
- Для изостерических ферментов, у которых кооперативного взаимодействия между активными центрами нет, то есть сродство фермента к субстрату не зависит от уже присоединенных молекул субстрата, h=1.
- Положительная кооперативность (**h>1**) характеризуется тем, что присоединение одной молекулы субстрата к активному центру фермента увеличивает сродство к субстрату остальных активных центров.
 - S-образные кривые зависимости скорости реакции от концентрации субстрата характерны для положительной кооперативности. Связывание кислорода с гемоглобином, имеющим 4 центра связи, характеризуется параметром Хилла h=2,9.
- Отрицательная кооперативность (**h<1**) характеризуется тем, что присоединение одной молекулы лиганда к активному центру фермента уменьшает сродство к лиганду остальных активных центров.

Особенности строения и функционирования аллостерических ферментов:

- обычно это олигомерные белки, состоящие из нескольких протомеров (субъединиц);
- они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;
- эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;
- аллостерические центры, так же, как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие к ингибиторам.

- аллостерические ферменты обладают свойством кооперативности;
- регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента;
- аллостерические ферменты катализируют ключевые реакции данного метаболического пути.

Эффект кооперативности:


Присоединение первой молекулы соответствующего лиганда (субстрата к активному центру или эффектора к аллостерическому центру) сопровождается конформационными изменениями, которые изменяют его сродство к субстрату или эффектору.

Кооперативные эффекты подразделяют на гомотропные и гетеротропные.

Гомотропные эффекты, при которых взаимодействия с лигандами могут быть кооперативными и антикооперативными, наблюдаются для идентичных лигандов, например, для молекул субстрата (а также для молекул кофермента или ингибитора).

Гетеротропные эффекты, при которых взаимодействия, также являющиеся либо кооперативными, либо антикооперативными, наблюдаются для молекул различных лигандов.

У аллостерических ферментов, так же как и у нерегуляторных ферментов, наблюдается «насыщение» субстратом

Хотя на сигмоидной кривой насыщения субстратом для аллостерических ферментов можно найти точку, в которой скорость реакции равна половине от максимальной скорости, эта величина не соответствует величине Km, поскольку поведение аллостерических ферментов не описывается гиперболической зависимостью, вытекающей и уравнения Михаэлиса-Ментен.