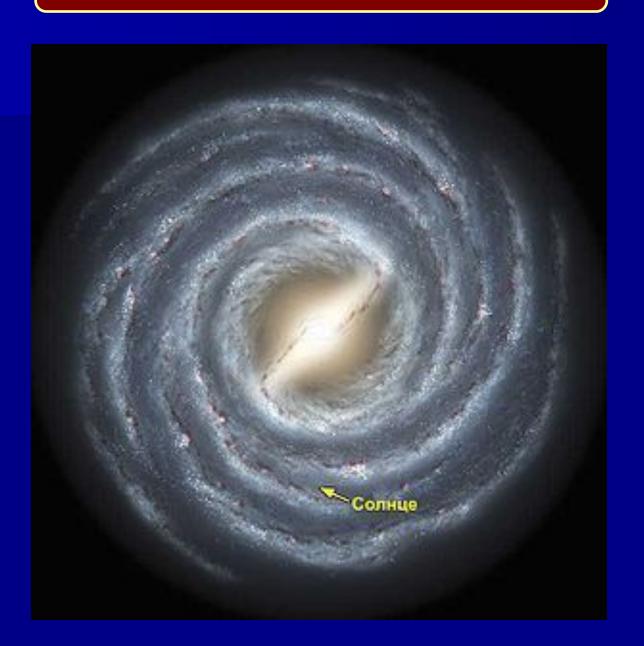
Внутреннее строение и физика Земли.

Земля - планета Солнечной системы


<u>Звёзда</u> - небесное тело, в котором естественным образом происходили, происходят или с необходимостью будут происходить реакции термоядерного синтеза.

Планета

- 1) планета не звезда, обращается вокруг звезды (например, Солнца).
- 2) достаточно массивна, чтобы под действием собственного тяготения стать шарообразным.
- 3) достаточно массивна, чтобы своим тяготением расчистить пространство вблизи своей орбиты от других небесных тел

<u>Галактика</u> — система из миллиардов звёзд, связанных взаимным тяготением и общим происхождением.

Галактика Млечный Путь

Солнечная система

Теории происхождения Солнечной системы

- 1. Небулярная теория Канта—Лапласа Солнечная система возникла в результате закономерного развития туманности.
- И. Кант считал, что в эволюционном развитии холодной пылевой туманности сначала возникло центральное массивное тело Солнце, а потом родились и планеты.
- П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Под действием центробежных сил от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты. Таким образом планеты образовались раньше Солнца.
- 2. Теория Дж. Х. Джинса Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразовалась в планеты.
- 3. Гипотеза О.Ю. Шмидта современные представления планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад.

Планетарные характеристики Земли

Основные характеристики планеты Земля

- 1. Macca $-5,976 \cdot 10^{27}$ r.
- 2. Средний радиус 149,6 млн. км
- 3. Скорость (период) вращения вокруг оси 24 ч или 86400 с

Внутреннее строение Земли: сейсмический метод

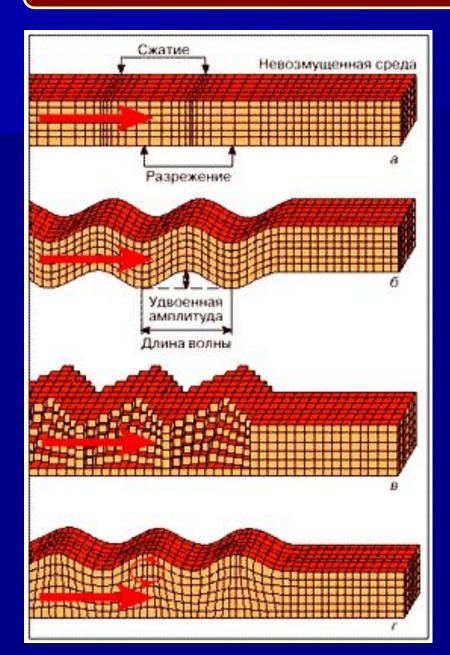


Рис. 3. Типы сейсмических волн:

а - продольные Р,

б - поперечные S,

в - поверхностные Лява L,

г - поверхностные Рэлея R.

Красной стрелкой показано

направление распространения волны

Объемные волны

Продольные сейсмические волны - упругие колебания вещества около своего среднего положения в направлении распространения самой волны, т е. переменное его сжатие и разряжение.

Эти волны распространяются в любых средах. Скорость их распространения в 1,7 раза больше скорости поперечных волн, они регистрируются раньше и называются первичными, или волнами Р (от лат. Prima — первые).

Поперечные волны - колебания вещества в направлении, перпендикулярном распространению волны. Они связаны со сдвигом вещества, т. е. с изменением его формы. Эти волны могут проходить только через твердое тело и затухают в жидком и газообразном веществах, ибо два последних не сопротивляются изменению формы. Регистрируются после прохождения продольных волн, то они получили название вторичных, или S-волн (от лат sekundo — вторые).

Скорость распространения **продольных волн** V_p зависит от плотности среды в данной точке ρ , модуля сжатия $K_{cж}$ модуля сдвига $\mu_{cдв}$

$$v_p = \sqrt{(K_{\text{CM}} + 1.33\mu_{\text{CAB}})/\rho}$$

Скорость распространения **поперечных волн** V_{S} , зависит от плотности среды ρ модуля сдвига μ_{CJB} .

$$v_{s} = \sqrt{\mu_{\rm c,db}/\rho}$$

Поскольку в жидких средах модуль сдвига $\mu_{\text{сдв}} = 0$, то это означает, что в них скорость распространения **продольных:**

$$v_p = \sqrt{K_{\text{\tiny CM}}/\rho}$$

Скорость поперечных волн:

$$v_s = 0$$
.

Поверхностные волны

Поверхностные волны (L-волны, от лат. longa—длинные) возникают на границе разнородных сред у поверхности материков и океаническою дна.

Вызывают одновременно деформацию объема и сдвига. Имеют большую длину, чем продольные и поперечные волны, а скорость их меньше.

Бывают двух типов: волны Рэлея и волны Лява.

Изучены англ. физиком Дж. Рэлеем в 1885 г. и Лявом в 1911 г. При землетрясениях в рэлеевской волне смещение частиц почвы происходит с вертикальной плоскости, а сами частицы описывают эллипс, двигаясь против часовой стрелки.

В волнах Лява смещение частиц почвы происходит в горизонтальной плоскости перпендикулярно к направлению движения волн.

В поверхностных волнах величина смещения максимальна на поверхности и по экспотенциальному закону убывает с ростом глубины.

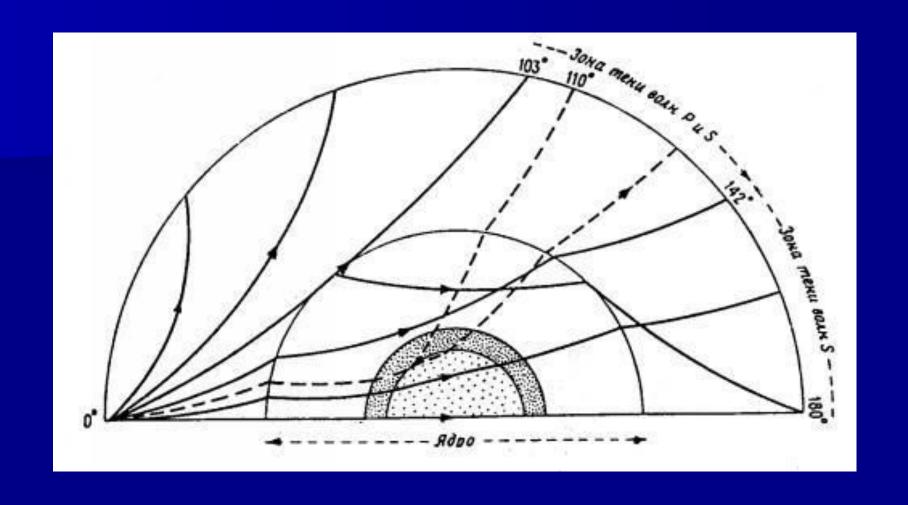


Рис. Преломление волн на границах раздела внутренних геосфер Земли

Модели внутреннего строения Земли

Сейсмическая модель Джеффриса-Гутенберга

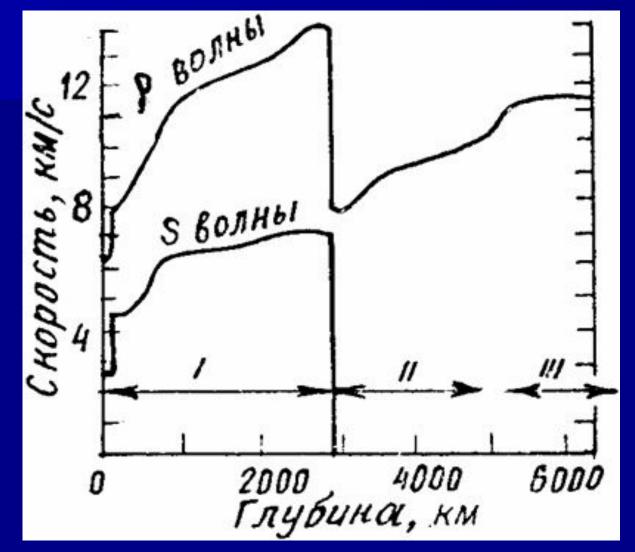


Рис. Изменение скоростей для волн Р и S внутри Земли: I - мантия; II - внешнее ядро; III - внутреннее ядро

Сейсмическая модель Буллена

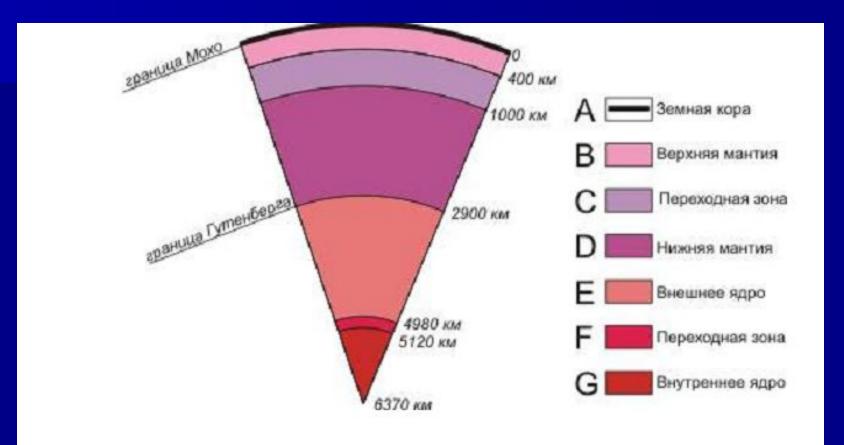


Рис. 2 Схема глубинного строения Земли (по К.Е.Буллену)

Положение границ, скорости распространения и затухания сейсмических волн внутри Земли

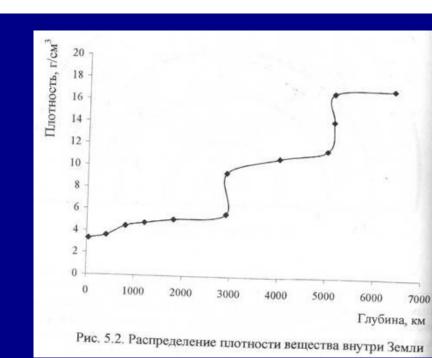
Слой	Глубина, км	Скорость волн, км/с		Q
		P	S	
A	0 - 33	6,75	3,8	450
В	33 - 400	8,06 - 9,64	4,5	60
C	400 - 900	11,4	7,18	150 - 550
D	900 - 2900	13,60	7,18	2000
E	2900 - 5000	7,50 - 10,0	0	4000
F	5000 - 5100	10,26	0	4000
G	5100 - 6371	11,28	3,6	400

Физическое состояние вещества геосфер

Плотность

Средняя плотность *земной коры* (0-33 км) известна из непосредственных определений и составляет — 2,7-3,0 г/см³.

Средняя плотность вещества Земли определяется из закона Ньютона:


$$g = \frac{GM}{R^2} \qquad M = \frac{4\pi}{3} R^{3\rho}$$

$$\rho = \frac{3 \cdot g}{4 \cdot \pi \cdot GR}$$

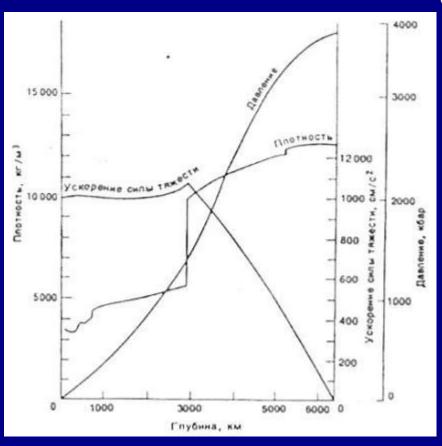
$$\rho = 5,517 \text{ г/см}^3$$

Таблица 1

Зона	Наименование		Глубина	Плотность
Α	Земная кора	Земная кора	~0-33 км	3,2 г/см ³
	Граниі	ца Мохоровичича (гра	аница Мохо, граница М)	
В	Верхняя мантия		33-400 км	3,5 г/см ³
С	Переходная зона	Мантия	400-1000 км	4,0 г/см ³
D	Нижняя мантия		1000-2900 км	5,0 г/см ³
		Граница Вихерт	а-Гутенберга	
E	Внешнее ядро		2900-4980 км	10-11 г/см ³
F	Переходная зона	Ядро	4980-5120 км	
G	Внутреннее ядро		5120-6370 км	12 г/см ³

Давление

Нарастание давления Р с глубиной r в недрах Земли подчиняется гидростатическому закону:


$$P = \rho \cdot g \cdot r$$

Давление изменяется как непрерывная функция, возрастающая с глубиной от 0 атм на поверхности до $1,3\cdot10^6$ атм на границе внешнего ядра и $4\cdot10^6$ атм в центре Земли.

Сила тяжести

Зная закон распределения плотности с глубиной, можно рассчитать изменение ускорения силы тяжести:

$$g(\rho) = \frac{4\pi G}{R^2} \int_0^R \rho(r) r^2 dr$$

