Предельные теоремы теории вероятностей. Основные понятия математической статистики.

Лекция 16

Числовые характеристики суммы независимых случайных величин

Пусть $x_{1,}x_{2}...x_{n}$ взаимно независимые, одинаково распределенные случайные величины с параметрами: $M[x_{k}] = m$; $\mathcal{D}[x_{k}] = \sigma^{2}$.

Случайная величина $\bar{x} = \frac{\sum_{k=1}^{n} x_k}{n}$, которую называют **средним арифметическим**, имеет характеристики: $M[\bar{x}] = M\left[\frac{\sum_{k=1}^{n} x_k}{n}\right] = \frac{1}{n} M[\sum_{k=1}^{n} x_k] = \frac{1}{n} nm = m$;

$$\mathcal{D}[\bar{x}] = \mathcal{D}\left[\frac{\sum_{k=1}^{n} x_k}{n}\right] = \frac{1}{n^2} n \sigma^2 = \frac{\sigma^2}{n} \quad ; \quad \sigma[\bar{x}] = \frac{\sigma}{\sqrt{n}}$$

Каждое слагаемое нормированной и центрированой случайной величины

$$Y_n = \frac{\bar{x} - M[\bar{x}]}{\sigma[\bar{x}]} = \frac{\sum_{k=1}^n \frac{x_k}{n} - \sum_{k=1}^n \frac{m}{n}}{\frac{\sigma}{\sqrt{n}}} = \sum_{k=1}^n \frac{x_k - m}{\sigma\sqrt{n}}$$
 имеет характеристики:

$$M[Y_k] = M\left[\frac{x_k - m}{\sigma\sqrt{n}}\right] = \frac{1}{\sigma\sqrt{n}}(M[x] - M[m]) = \frac{1}{\sigma\sqrt{n}}(m - m) = 0$$

$$\mathcal{D}[Y_k] = \mathcal{D}\left[\frac{x_k - m}{\sigma\sqrt{n}}\right] = \frac{1}{\sigma^2 n}(\mathcal{D}[x_k] - \mathcal{D}[m]) = \frac{\sigma^2}{\sigma^2 n} = \frac{1}{n}$$

Поскольку
$$M[Y_k] = 0$$
, $\mathcal{D}[Y_k] = M[Y_k^2] - M[Y_k] = M[Y_k^2] = \frac{1}{n}$

Характеристическая функция суммы независимых случайных величин

Характеристическая функция каждого слагаемого:

$$G_{Y_k}(t) = M[e^{ity_k}] = M\left[1 + iy_k t + y_k^2 \frac{(it)^2}{2!} \dots\right] = 1 + M[Y_k]it + M[Y_k^2] \frac{(it)^2}{2!}$$
$$= 1 + \frac{1}{n} \frac{(it)^2}{2!} + \dots$$

Характеристическая функция суммы $\sum_{k=1}^{n} Y_k$:

$$G_{Y_n}(t) = (G_{Y_k}(t))^n = \left(1 + \frac{1}{n} \frac{(it)^2}{2!} \dots\right)^n$$

При $n \to \infty$ получаем неопределенность $[1^{\infty}]$, которую раскрываем, используя основное логарифмическое тождество и разложение в ряд логарифмической функции $(\ell n (1+x)_{x\to 0} = x + 0(x))$:

$$\lim_{n\to\infty}G_{Y_n}(t)=e^{\lim_{n\to\infty}n\ell n\left(1+\frac{1}{n}\frac{(it)^2}{2!}\dots\right)}=e^{\lim_{n\to\infty}n\left(\frac{1}{n}\left(\frac{-t^2}{2}\right)\right)}=e^{-\frac{t^2}{2}}.$$

В результате сформулируем центральную предельную теорему.

Центральная предельная теорема

Если случайные величины $x_1, x_2 \dots x_n$ независимы и одинаково распределены, а также имеют конечные математическое ожидание и дисперсию: $M[x_k] = m; \quad \mathcal{D}[x_k] = \sigma^2$,

то для любого действительного x закон распределения нормированного и центрированного среднего арифметического n случайных величин при $n \to \infty$ стремится к нормальному закону распределения с параметрами M[x] = m = o и $\sigma = 1$ (подробнее смотри $\frac{\text{Теоремы.docx}}{\text{Теоремы.docx}}$):

$$F_{Y_n}(x) \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz$$
; $z = \frac{x-m}{\sigma}$; $G_{Y_n}(t) \to e^{-\frac{t^2}{2}}$, $n \to \infty$

Таким образом, нормальное распределение является предельной формой распределения суммы большого числа случайных величин, из которых ни одна не доминирует над другой.

Теоремы Муавра - Лапласа

Рассматриваем биномиальное распределение (схема Бернулли): вероятность того, что при n испытаниях событие A появится k раз:

$$P(n, k, p) = c_n^k p^k q^{n-k}; \quad p(A) = p; \quad p + q = 1; \quad p(\bar{A}) = q.$$

При достаточно больших значениях *прq* биномиальное распределение приближенно заменяют нормальным распределением :

$$M[x] = np; \quad D[x] = npq; \quad \sigma[x] = \sqrt{npq} \implies z = \frac{x-m}{\sigma} = \frac{k-np}{\sqrt{npq}}$$

Вероятность того, что при n испытаниях событие A появится k раз:

$$P(n,k,p) pprox rac{1}{\sqrt{2\pi}\sqrt{npq}}e^{-rac{z^2}{2}}; \quad z = rac{k-np}{\sqrt{npq}} \quad ($$
Локальная теорема Муавра – Лапласа $)$

Вероятность того, что при n истытаниях число событий A удовлетворяет условию $k_1 \leq k < k_2$:

$$P(k_1 \le k < k_2) = \phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \phi\left(\frac{k_1 - np}{\sqrt{npq}}\right),$$

(Интегральная теорема Муавра-Лапласа)

Закон больших чисел в форме Бернулли

Найдем вероятность того, что относительная частота события отличается от его вероятности не более, чем на \mathcal{E} : $P\left(\left|\frac{k}{n}-p\right|\leq\mathcal{E}\right)=?$

С учётом того, что
$$\left|\frac{k-np}{n}\right| \leq \mathcal{E} \to |k-np| \leq \mathcal{E} \cdot n \to -\mathcal{E}n \leq k-np \leq \mathcal{E}n \to -\mathcal{E}n$$

$$np - \mathcal{E}n \leq k \leq np + \mathcal{E}n$$
 , используем интегральную теорему Муавра-Лапласа получаем: $P\left(\left|\frac{k}{n}-p\right| \leq \mathcal{E}\right) = P(np - \mathcal{E}n \leq k \leq np + \mathcal{E}n) == \phi\left(\frac{np + \mathcal{E}n - np}{\sqrt{npq}}\right) - \phi\left(\frac{np - \mathcal{E}n - np}{\sqrt{npq}}\right) == \phi\left(\frac{\mathcal{E}n}{\sqrt{npq}}\right) - \phi\left(\frac{-\mathcal{E}n}{\sqrt{npq}}\right) = \phi\left(\mathcal{E}\sqrt{\frac{n}{pq}}\right) - 1 + \phi\left(\mathcal{E}\sqrt{\frac{n}{pq}}\right) = \phi\left(\mathcal{E}\sqrt{\frac{n}{pq}}\right) =$

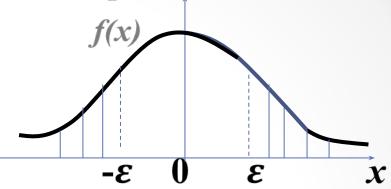
$$2\phi\left(\mathcal{E}\sqrt{\frac{n}{pq}}\right) - 1. \quad \lim_{n \to \infty} P\left(\left|\frac{k}{n} - p\right| \le \mathcal{E}\right) = \lim_{n \to \infty} \left(2\phi\left(\mathcal{E}\sqrt{\frac{n}{pq}}\right) - 1\right) = 2\phi(\infty) - 1 = 1$$

$$\lim_{n\to\infty}P\left(\left|\frac{k}{n}-p\right|\leq\mathcal{E}\right)=1$$

Относительная частота события в n независимых испытаниях при $n \to \infty$ стремится к вероятности одного испытания

Неравенство Чебышева. Теорема Чебышева.

$$P(|x| \ge \mathcal{E}) \le \frac{\mathcal{D}[x]}{\mathcal{E}^2}$$



Дисперсия совпадает со вторым начальным моментом:

$$\sigma^2 = \mathcal{D}[x] = M[x^2] - M^2[x] = M[x^2] = \int_{-\infty}^{\infty} x^2 f(x) dx \ge \int x^2 f(x) dx_{|x| \ge \mathcal{E}} \ge \mathcal{E}^2 \int f(x) dx_{|x| \ge \mathcal{E}}$$
: площадь под графиком $f(x)$ равна 1 и она больше, чем площадь под "хвостами" распределений. $\Longrightarrow \int_{|x| \ge \mathcal{E}} f(x) dx = P(|x| \ge \mathcal{E})$

Для случайной величины $X = \overline{x} - m$ — отклонение среднего от $M[x] \Longrightarrow$

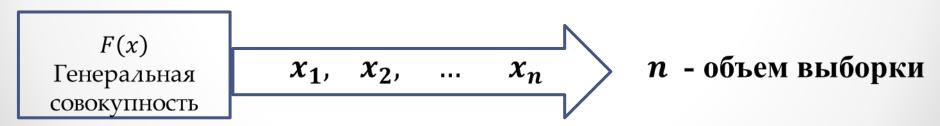
$$M[X] = M[\bar{x}] - m = 0;$$
 $\mathcal{D}[x] = \mathcal{D}[\bar{x}] + \mathcal{D}[m] = \frac{\sigma^2}{n}$ \Longrightarrow неравенство Чебышева: $P(|X| \ge \mathcal{E}) \le \frac{\sigma^2}{\mathcal{E}^n} \to P(|x| \le \mathcal{E}) = P(|\bar{x} - M[x]| \le \mathcal{E}) \ge 1 - \frac{\sigma^2}{n\mathcal{E}^2}$

$$\lim_{n\to\infty} P(|\overline{x}-M[x]| \leq \mathcal{E}) = 1$$
 (теорема Чебышева).

Математическая статистика

позволяет получать обоснованные выводы о видах распределения, параметрах и других свойствах случайных величин по совокупности наблюдений над ними – выборке.

Пусть случайная величина X распределена по закону F(x) и наблюдается в эксперименте D, а опыт повторяется n раз в одних и тех же условиях. В результате получаем последовательность наблюдений значений случайной величины или n случайно отобранных объектов $\{x_1, x_2, \dots x_n\}$, которую называют выборкой из генеральной совокупности с законом распределения F(x):



Далее все выводы делаются на основе выборки.

Основные задачи математической статистики

- 1. Сбор статистического материала (получение выборки)
- 2. Результаты наблюдений, записанные в порядке регистрации неудобны для анализа. Поэтому вторая задача статистического описания получение такого представления выборки, которое позволяет выявить характерные особенности распределения (группировка данных по интервалам, определение частот элементов выборки, построение полигона частот, гистограммы, эмпирической функции распределения)
- 3. Получение числовых характеристик выборки и оценка параметров распределения.
- 4. На основе полученных оценок и характерных особенностей распределения выборки выдвигается гипотеза (предположение) о виде распределения генеральной совокупности или строится другая вероятностная модель описания данных
- 5. Выполняется проверка **статистической значимости** (оценка погрешности) и **адекватности** (соответствия модели экспериментальным данным) построенной вероятностной модели.