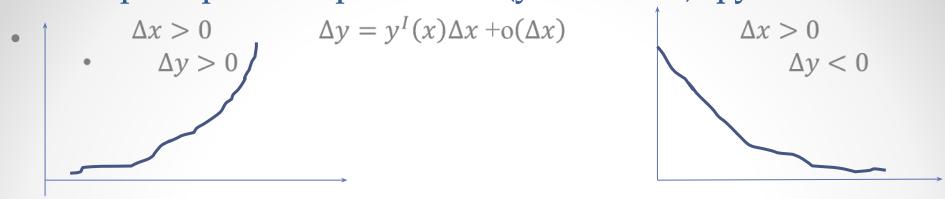
Применение производной к исследованию функций. Локальные экстремумы.

Точка перегиба.

Лекция 9

Критерий возрастания (убывания) функции



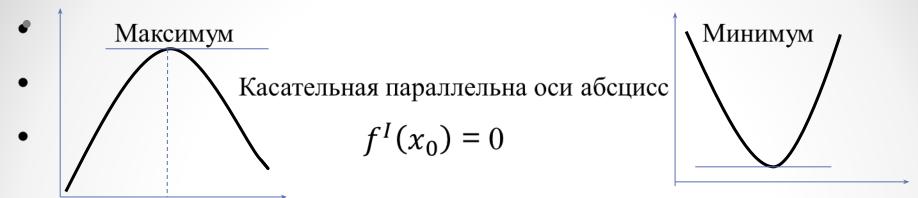
Для того, чтобы функция f(x), дифференцируемая на интервале (a,b), была возрастающей (убывающей)на этом интервале , необходимо и достаточно, чтобы для всех $x \in (a,b)$ выполнялось $f^I(x) \ge 0$ $(f^I(x) \le 0)$

Локальные экстремумы (максимумы, минимумы)

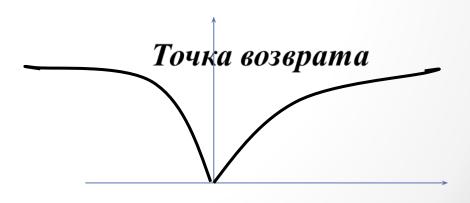
Точка локального экстремума функции x_0 - это точка непрерывности функции, для всех точек окрестности которой выполняется неравенство:

$$f(x) \le f(x_0)$$
 — $\Delta y = f(x) - f(x_0) \le 0$ - локальный максимум $f(x) \ge f(x_0)$ — $\Delta y = f(x) - f(x_0) \ge 0$ - локальный минимум

Точки локального экстремума. Необходимые условия существования. Критические точки



- Если точка x_0 является точкой экстремума функции f(x),
- то $f^I(x_0) = 0$ или не существует



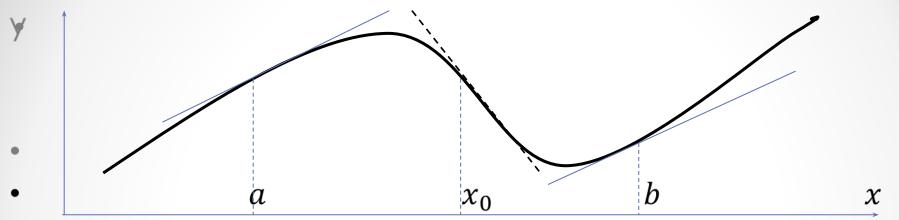
Вертикальная касательная

Бесконечно большая производная

Точки локальных экстремумов. Достаточные условия существования

- 1. Пусть точка x_0 критическая точка первой производной, где выполняются необходимые условия существования экстремума функции f(x). Тогда, если *при переходе через эту точку производная функции меняет знак*, то x_0 точка локального экстремума: 1)при изменении знака производной с **плюса** на **минус** точка является точкой **максимума** 2) при изменении знака производной с *минуса* на *плюс* точка является точкой *минимума*
- 2. Пусть в точке выполняются условия: $f^I(x_0) = 0, f^{II}(x_0) \neq 0$:
- $f(x) = f(x_0) + \frac{1}{2!}f^{(2)}(x_0)(x x_0)^2 + o((x x_0)^2).$
- Тогда в точке максимума $f^{II}(x_0) < 0$,
- а в точке минимума $f^{II}(x_0) > 0$.
- Экстремумы.doc

Характер выпуклости графика функции. Точка перегиба.



- График функции в точке y = f(x) в точке x = a обращен выпуклостью вверх : существует окрестность точки, в каждой точке которой касательная лежит выше графика функции.
- График функции в точке y = f(x) в точке x = b обращен выпуклостью вниз : существует окрестность точки, в где касательная лежит ниже графика функции.
- Знак превышения графика над касательной определяется знаком второй производной: $\Delta y = f(x) \left(f(a) + f^I(a)(x-a)\right) = \frac{f^{(2)}(x)}{2!} (x-a)^2 + \dots$
- 1) $\Delta y < 0$, $f^{(2)}(a) < 0$ (выпуклость вверх),
- 2) $\Delta y > 0$, $f^{(2)}(b) > 0$ (выпуклость вниз)

Точка перегиба

- Точка x_0 называется *точкой перегиба* графика функции, если удовлетворяет следующим условиям:
- 1. Функция f(x) определена в точке x_0 или ближайшей ее окрестности и *непрерывна* в самой точке
- 2. Функция имеет в точке x_0 конечную или бесконечную производные (в точке можно провести касательную)
- 3. При переходе через x_0 изменяется направление выпуклости графика функции (касательная переходит с одной стороны графика на другую)

Необходимые условия существования точки перегиба (критические точки второй производной): $f^{(2)}(x_0) = 0$ или $f^{(2)}(x_0) = \infty$

Достаточные условия существования точки перегиба: вторая производная изменяет знак при переходе через точку

Асимптоты графика функции

Если при $x \to \infty$ ($x \to -\infty$) функцию можно представить в виде $f(x) = g(x) + O\left(\frac{1}{x}\right)$, то g(x) — асимптота графика функции.

Асимптоту можно найти следующими способами:

- 1. Разложить функцию по формуле Маклорена по степеням $\frac{1}{x}$
- 2. Если функция является дробно-рациональной, то можно путем деления углом выделить целую часть асимптоту
- 3. Линейную асимптоту y = kx + b можно найти по формулам $k = \lim_{x \to \infty} \frac{f(x)}{x}, \qquad b = \lim_{x \to \infty} (f(x) kx)$

Пример:
$$f(x) = \frac{x^3}{(x+1)^2}$$
. 1) $\frac{x^3}{(x+1)^2} = x \left(1 + \frac{1}{x}\right)^{-2} = x - 2 + \frac{3}{x}$

2)
$$\frac{x^3}{(x+1)^2} = x - 2 + \frac{3x+2}{(x+1)^2}$$
, 3) $k = \lim_{x \to \infty} \frac{x^2}{(1+x)^2} = 1$,
 $b = \lim_{x \to \infty} \left(\frac{x^3}{(x+1)^2} - x \right) = \lim_{x \to \infty} \frac{x^3 - x^3 - 2x^2 - x}{x^2 + 2x + 1} = -2$ ACUMITOTЫ

графика функции.docx

План исследования функции и построения графика

- 1. Найти область определения функции. Проверить является ли функция четной, нечетной, периодической
- 2. Найти точки пересечения графика функции с осями координат, интервалы знакопостоянства. Найти точки разрыва функции
- 3. Найти асимптоты графика функции: найти односторонние пределы в точках разрыва и на границах области определения, проанализировать поведение функции при бесконечно больших значениях аргумента
- 4. Сделать набросок графика, отразив полученные результаты
- 5. Найти первую производную, промежутки возрастания, убывания, экстремумы.
- 6. Найти вторую производную, точки перегиба интервалы выпуклости вверх или вниз
- 7.Окончательно построить график функции

травило лопиталя раскрытия неопределенностей $\frac{0}{0}$, $\frac{∞}{∞}$

• Пусть функции f(x), g(x) дифференцируемы в окрестности точки a (за исключением, может быть, самой точки), являются обе либо бесконечно малыми, либо бесконечно большими, существует конечный $\lim_{x\to a} \frac{f^I(x)}{g^I(x)}$. Тогда $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f^I(x)}{g^I(x)}$

•
$$\Pi pumep$$
. $\lim_{x\to 3} \frac{\ln(x^2-8)}{2x^2-5x-3} = \lim_{x\to 3} \frac{2x/(x^2-8)}{4x-5} = \frac{6}{7}$

- При раскрытии неопределенности $[0 \cdot \infty]$ следует преобразовать в $\frac{0}{0}$ или $\frac{\infty}{\infty}$. Пример: $\lim_{x \to +0} x \ln x \ [0 \cdot \infty] = \lim_{x \to +0} \frac{\ln x}{\frac{1}{x}} \left[\frac{\infty}{\infty}\right] = \lim_{x \to +0} \frac{(\ln x)^I}{(\frac{1}{x})^I} = \lim_{x \to +0} \frac{1/x}{-1/x^2} = \lim_{x \to +0} (-x) = 0.$
- Неопределенность $\lim_{x\to a} f(x)^{g(x)} \left[\infty^{0}\right] =$ $e^{\lim_{x\to a} g(x) \ln f(x)} c$ водится к неопределенности $\left[0\cdot\infty; \frac{\infty}{\infty}\right]$