Сложение колебаний

- Сложение коллинеарных колебаний
- Биения
- Сложение ортогональных колебаний

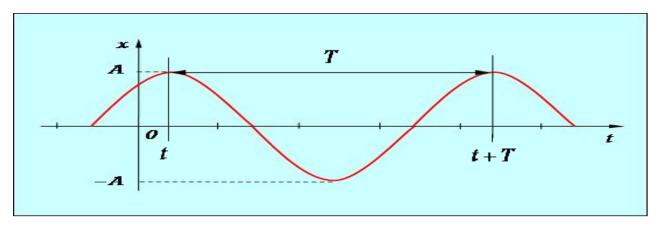
Основные характеристики гармонического колебания

$$x = A\cos(\omega t + \varphi_0)$$

Амплитуда A — это максимальное отклонение тела от положения равновесия Циклическая частота ω ; Фаза колебания ω t + ϕ_0 Начальная фаза ϕ_0

Α, φο являются начальными условиями,
 ω определяется параметрами системы

Плоская диаграмма



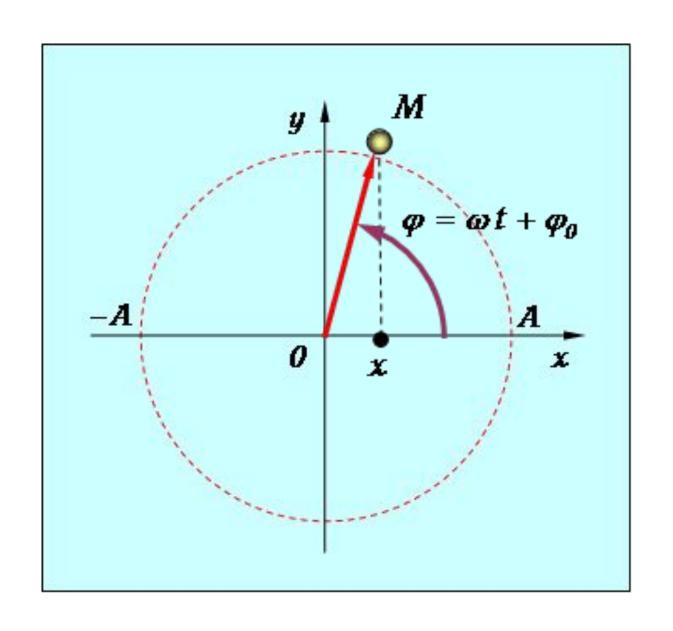
Период колебаний – это время одного полного колебания

$$T=\frac{2\pi}{\omega}$$

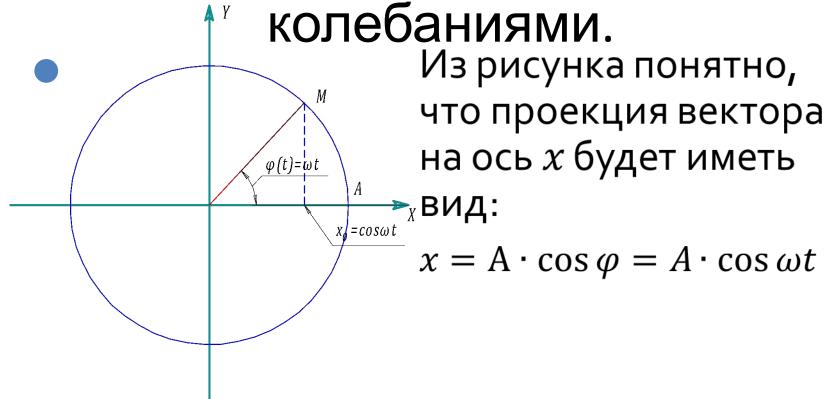
Частота колебаний – это число колебаний в единицу времени

$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$

Векторная диаграмма

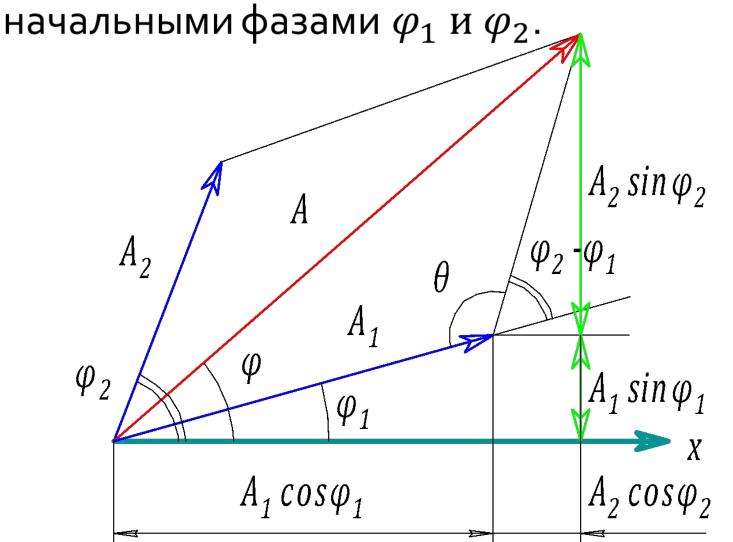


связь вращательного движения с гармоническими



т.е. фаза эквивалентна углу поворота. Это позволяет наглядно представлять гармонические колебания в виде векторных диаграмм.

 \bigcirc ложим два гармонических колебания с одинаковыми частотами, но разными амплитудами A_1 и A_2 и разными начальными фазами α_4 и α_5



→мплитуда результирующего колебания из теоремы косинусов будет:

$$A^2 = {A_1}^2 + {A_2}^2 - 2A_1A_2cos heta$$
, но $cos heta = \pi - \cos(arphi_2 - arphi_1) = -cos(arphi_2 - arphi_1)$ Тогда: $A^2 = {A_1}^2 + {A_2}^2 + 2A_1A_2\cos(arphi_2 - arphi_1)$ $tgarphi = rac{Y}{X} = rac{(A_1sinarphi_1 + A_2sinarphi_2)}{(A_1cosarphi_1 + A_2cosarphi_2)}$

Поскольку векторы A_1 и A_2 вращаются с одной и той же угловой скоростью ω , то с такой же угловой скоростью вращается результирующий вектор A

Проекция его на ось X будет:

$$x(t) = A\cos(\omega t + (\varphi_2 - \varphi_1))$$

Частные случаи.

1) Если $\varphi_2 - \varphi_1 = +2\pi n$, где n=0,1,2... (колебания в одинаковой фазе) Тогда:

$$\cos(\varphi_2 - \varphi_1) = 1$$

Следовательно, результирующая амплитуда:

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2} = (A_{1} + A_{2})^{2}$$

 $A = A_{1} + A_{2}$

Это означает, что колебания усиливают друг друга.

$$\mathbf{Q}$$
) Если $\varphi_2 - \varphi_1 = +(2n+1)\pi$ где $\mathbf{n} = 0,1,2...$

(колебания происходят в противофазе) Тогда:

$$\cos(\varphi_2 - \varphi_1) = -1$$

И результирующая амплитуда:

$$A^{2} = A_{1}^{2} + A_{2}^{2} - 2A_{1}A_{2} = (A_{1} - A_{2})^{2}$$
$$A = A_{1} - A_{2}$$

И в частности, при $A_1 = A_2 \ \ A = 0$

Колебания «гасят» друг друга (амплитуда результирующего колебания равна нулю).

3) Пусть колебания немного отличаются по частоте — на малую величину $\Delta \omega$:

$$x_1 = A\cos\omega t,$$

$$x_2 = A\cos(\omega + \Delta\omega)t$$

Где $\Delta\omega\ll\omega$

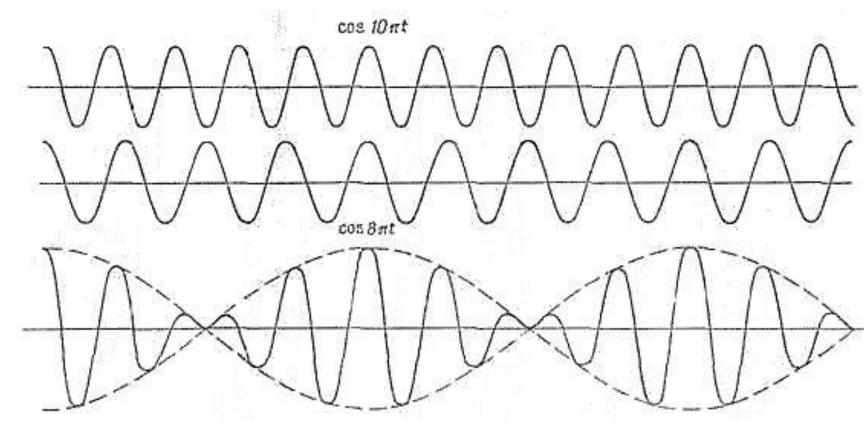
$$x = x_1 + x_2 = 2A\cos\left(\frac{\Delta\omega}{2}\right)t \cdot \cos\frac{(2\omega + \Delta\omega)t}{2}$$

Так как $\Delta\omega \ll \omega$, то

$$x \approx (2A\cos\frac{\Delta\omega t}{2}) \cdot \cos\omega t$$

Первый сомножитель можно рассматривать, как медленно меняющуюся амплитуду колебаний, происходящих с частотой ω.

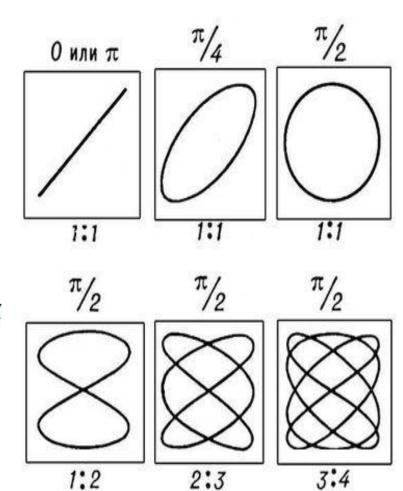
Такие колебания называют биением.



Сложение ортогональных колебаний. Фигуры Лиссажу.

$$x = A \cos \omega t$$
$$y = B \cos(\omega t + \alpha)$$

$$\frac{x^2}{A^2} - \frac{2xy}{AB}\cos\alpha + \frac{y^2}{B^2} = \sin^2\alpha$$



Контрольные вопросы

1. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями

$$x = 3\cos(2\omega t) \qquad y = 4\cos(2\omega t + \pi)$$

Определить уравнение траектории точки и нарисовать ее.

2. Складываются два гармонических коллинеарных колебания с одинаковыми периодами и амплитудами А. Чему равна амплитуда результирующего колебания, если разность фаз складываемых колебаний

$$\Delta \varphi = \frac{\pi}{3}$$