

Калеев Дмитрий Вячеславович кафедра ВТ

Лекции 2 «Физические величины и их системы»

«Физические величины и их системы»

Свойство объекта (явления, процесса) — философская категория, отражающая такую его сущность, которая проявляется в сравнении и означает сходство или различие с другими объектами (явлениями, процессами)

Свойства делятся на качественные и количественные

Величина – это свойство, имеющее количественное проявление

Идеальные (абстрактные) величины — относятся к математике и являются обобщением конкретных реальных величин

Реальные величины — реально существующие физические и нефизические величины

«Физические величины и их системы»

Физическая величина — свойство, в качественном отношении присущее многим физическим объектам, их системам, многим протекающим в них процессам, но в количественном отношении индивидуальное для каждого физического объекта.

Энергетически пассивные: масса тела, электрическое сопротивление, емкость, индуктивность

Энергемически активные: энергетические параметры процессов преобразования, передачи и использования различных видов энергии

Размер величины — количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу

Значение размера величины - оценка величины в виде некоторого числа принятых для неё единиц.

Q = q[Q], где Q — значение величины, q — численное значение, [Q] — единица физической величины (основное уравнение измерения)

Единица измерения физической величины — физическая величина фиксированного размера, которой условно присвоено числовое значение, равное единице, и применяемая для количественного выражения однородных с ней физических величин

Например: $T = 20 [1^{\circ}C] = 88 [1^{\circ}F]$

«Физические величины и их системы»

По степени достоверности:

Истинные значения, которые идеальным образом отражают в качественном и количественном отношениях соответствующую физическую величину;

Действительные значения, которые определяются экспериментальным путем с использованием самых точных средств измерения и находятся настолько близко к истинному значению, что для поставленной измерительной задачи могут его заменять;

Измеренные значения, получаемые в результате измерительного эксперимента, проводимого с использованием конкретного средства измерения и равные показаниям этого средства измерения.

«Физические величины и их системы»

Единицы измерений:

- -Независимые ЕИ
- -Производные ЕИ
- -Кратные ЕИ
- -Дольные ЕИ

Множитель	Приставка	Международное обозначение	Российское обозначение
10^{18}	экса-	Е	Э
10^{15}	пета-	P	П
10^{12}	тера-	Т	T
10^{9}	гига-	G	Γ
10^6	мега-	M	M
10^3	кило-	k	К
10^2	гекто-	h	Γ
10 ¹	дека-	da	да
10^{-1}	деци-	d	Д
10^{-2}	санти-	c	c
10^{-3}	милли-	m	M
10^{-6}	микро-	u	МК
10^{-9}	нано-	n	Н
10^{-12}	пико-	p	П
10^{-15}	фемто-	f	ф
10^{-18}	атто-	a	a

Мера — тело или устройство, предназначенное для материального воспроизведения единицы измерений

По отношению к алгебраическим действиям:

Однородные величины – имеющие одну и ту же единицу измерения **Разнородные величины** – имеющие разные единицы измерения

Общий вид уравнений связи физических величин:

$$X = kA^{\alpha}B^{\beta}C^{\gamma}...$$

$$F = ma E = \frac{1}{2}mv^2$$

Размерность физической величины — это выражение, имеющее вид степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь конкретной величины с основными физическими величинами системы физических величин

$$\dim X = L^{\alpha} M^{\beta} T^{\gamma} \dots$$
 $X = kAB$ $x[X] = ka[A]b[B]$ $E = \frac{mv^2}{2} \Big(\mathbf{M}^2 \cdot \mathbf{K} \mathbf{\Gamma} \cdot \mathbf{c}^{-2} \Big)$ $x = kab$ - уравнение связи числовых значений физических величин $P = 0.001UI$ $P = p[\kappa Bm]$ $U = u[B]$ $I = i[A]$

Когерентной называется производная единица физической величины, связанная с другими единицами системы уравнением, в котором коэффициент пропорциональности k принят равным единице

$$v = \frac{L}{t} \qquad v = 1 \frac{M}{c}$$

$$E = \frac{1}{2}mv^2$$

$$E = \frac{1}{2}(2m)(v^2) = \frac{1}{2}(2\kappa\Gamma)\left(1\frac{M^2}{c^2}\right) = 1\frac{\kappa\Gamma \cdot M^2}{c^2} = 1\text{Дж}$$

$$E = \frac{1}{2} (m) \left(\sqrt{2} v^2 \right) = \frac{1}{2} (1 \text{кг}) \left(2 \frac{\text{м}^2}{\text{c}^2} \right) = 1 \frac{\text{кг} \cdot \text{м}^2}{\text{c}^2} = 1 \text{Дж}$$

«Физические величины и их системы»

Система физических величин - совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин.

Пример:

LMT – СФВ механики: длина, масса, время

LMTI⊕ NJ – международная система единиц (СИ)

Система единиц физических величин - совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин.

«Физические величины и их системы»

1832 г. – К.Гаусс предложил методику основных и производных единиц физических величин, предложил «абсолютную» систему единиц измерений

СФВ: длина, масса, время

СЕФВ: миллиметр, миллиграмм и секунда

1881 г. – *СГС* система Сантиметр, грамм, секунда.

Недостатки: не когерентна
7 модификаций
сложности с электрическими и
магнитными измерениями

Карл Фридрих Гаусс

«Физические величины и их системы»

Середина XIX в. – *МКГСС*

Метр, килограмм-сила и секунда

Достоинства — удобна в использовании на промышленных предприятия, используется в ракетной технике

Недостатки:

- 1. Невозможность найти эталон килограмм-силы
- 2. Масса производная величина, составляла 9.80665 кг

1901 г. – **МКС**

Метр, килограмм, секунда и ампер

Вошла в качестве составной части в Международную систему единиц (СИ)

«Физические величины и их системы»

1960 г. – XI Генеральная конференция по мерам и весам приняла стандарт «Международная система единиц (SI)»

Состояла из 6 основных и 2 дополнительных единиц

1971 г. – XIV конференция внесла дополнительную основную единицу количества вещества (моль)

1995 г. – XX конференция исключила как класс дополнительные единицы, внеся их в безразмерные производные единицы СИ

«Физические величины и их системы»

Единица	Обозначение	Величина	Определение	
Метр	M	Длина	Длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды	
Килограмм	КΓ	Macca	Масса международного прототипа	
Секунда	С	Время	Время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133	
Ампер	A	Сила электричес кого тока	Ампер есть сила не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную $2 \cdot 10^{-7}$ ньютонов	

«Физические величины и их системы»

Единица	Обозначение	Величина	Определение	
Кельвин	К	Термодинамичес кая температура	Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды	
Моль	МОЛЬ	Количество вещества	Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.	
Кандела	кд	Сила света	Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540.10^{12} Гц, энергетическая сила света которого в этом направлении составляет 1/683 Bт/ср	

«Физические величины и их системы»

$$l = c_0 t \qquad \qquad \dim[L] = L$$
$$\dim[S] = S$$

Уравнения связи:

1. Второй закон Ньютона:
$$F = k_1 ma$$

2. Закон всемирного тяготения:
$$F = k_2 \frac{m_1 m_2}{r^2}$$

iff
$$k_1 = k_2 : \dim(M) = 1 \frac{M^3}{c^2}$$

iff $k_1 = 1$, dim $[M] = M = 1 \text{ K}\Gamma$:

$$\begin{cases} F = ma \\ \dim[F] = \frac{\kappa\Gamma \cdot M}{c^2} \end{cases}$$

$$F = \gamma \frac{m_1 m_2}{r^2}$$

$$\gamma = (6,672 \pm 0,041) \cdot 10^{-11} \frac{\text{H} \cdot \text{m}^2}{\text{K}\Gamma^2}$$

Fundamental Physical Constants — Universal constants

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
speed of light in vacuum	c, c_0	299 792 458	${ m m\ s^{-1}}$	exact
magnetic constant	μ_0	$4\pi \times 10^{-7}$	$N A^{-2}$	
- 10		$= 12.566370614 \times 10^{-7}$	NA^{-2}	exact
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times 10^{-12}$	Fm^{-1}	exact
characteristic impedance of vacuum $\mu_0 c$	Z_0	376.730 313 461	Ω	exact
Newtonian constant of gravitation	G	$6.67408(31) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	4.7×10^{-5}
III.	$G/\hbar c$	$6.70861(31) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	4.7×10^{-5}
Planck constant	h	$6.626070040(81) \times 10^{-34}$	Js	1.2×10^{-8}
		$4.135667662(25) \times 10^{-15}$	eV s	6.1×10^{-9}
$h/2\pi$	\hbar	$1.054571800(13) \times 10^{-34}$	Js	1.2×10^{-8}
#1000 € 10 100000		$6.582119514(40) \times 10^{-16}$	eV s	6.1×10^{-9}
	$\hbar c$	197.326 9788(12)	MeV fm	6.1×10^{-9}
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.176470(51) \times 10^{-8}$	kg	2.3×10^{-5}
energy equivalent	$m_{ m P}c^2$	$1.220910(29)\times10^{19}$	GeV	2.3×10^{-5}
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416808(33)\times 10^{32}$	K	2.3×10^{-5}
Planck length $\hbar/m_{\rm P}c = (\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.616229(38) \times 10^{-35}$	m	2.3×10^{-5}
Planck time $l_P/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.39116(13)\times10^{-44}$	S	2.3×10^{-5}

«Физические величины и их системы»

Источники

- 1. Основы метрологии. Бурдун Г.Д.
- 2. Основы метрологии и электрические измерения. Душин Е.М.
- 3. Метрология. Теория измерений. Жуков В.К.

Продолжительность - 1 час