
Лекция 17.

Цель.

Рассмотреть взаимосвязи систем и устройств стенда для исследования физико-механических свойств ядерного топлива, технологические операции с облучательными устройствами и испытуемыми образцами. Представить облучательные устройства в составе стенда, их возможности по исследованию свойств ядерного топлива, области изменения параметров при испытании топливных композиций. Познакомить слушателей с результатами научных исследований, полученных при эксплуатации стендов, и их ролью в подготовке научных кадров. Ознакомить с тематикой заключительной части курса.

<u>План.</u>

- 1. Взаимосвязи систем и устройств стенда для исследования физикомеханических свойств ядерного топлива
- 2. Технологические операции с облучательными устройствами и испытуемыми образцами.
- 3. Облучательные устройства стенда.
- 4. Направления работ, научные результаты, подготовка научных кадров.

Взаимосвязи систем и устройства реакторного стенда.

На схеме показаны взаимосвязи систем, экспериментальные устройства и измерительное оборудование стенда.

Реакторный стенд (1) включает в себя:

- -реактор (2),
- -экспериментальные устройства (13),
- -аналоговую систему измерения физических параметров (3),
- -информационно-измерительную систему (ИСС) на базе ЭВМ (4),
- -систему обеспечения эксперимента (5).

Все эти системы и экспериментальные установки в результате взаимодействия позволяют получить информацию об объекте испытаний, обработать её (6) и получить конечный результат в виде зависимостей или цифрового материала об изучаемом свойстве.

Каждая из систем (3,5,13) расшифровывается (рис.2), однако, требует некоторых дополнительных пояснений.

Позиция (3) содержит информацию об измерительных системах и их аппаратурном обеспечении (7,8,9,10,11,12).

Система обеспечения эксперимента

Оистема обеспечения Эксперимента 5

Температура испытаний:

-нагрев: собственные тепловыделения, нагреватель.

-охлаждение: теплоноситель реактора,

газ-заполнитель, вакуум. 20

Среда испытаний:

- система очистки газа-носителя (заполнителя)
 - система вакуумирования 21

Транспортные операции:

-смена образца,

- смена установки. 22

Система обеспечения эксперимента (5) делится на три подсистемы.

Заданная температура испытаний (20) достигается установлением баланса тепла в экспериментальной установке. В зависимости от температуры испытаний баланс может достигаться либо за счет собственных тепловыделений в образце при определённой системе охлаждения, либо с помощью дополнительного электрического нагревателя.

Возможны различные комбинации систем нагрева и охлаждения, в том числе и изменение тепловыделений при перемещении испытуемого образца в неравномерном поле излучений для достижения требуемого температурного интервала испытаний

Так как большинство объектов испытаний необходимо исследовать при повышенных температурах, когда возможно их химическое взаимодействие с окружающей атмосферой, что существенно может исказить результаты экспериментов, то система обеспечения предусматривает вакуумирование рабочего объема и заполнение его очищенным газом —носителем (заполнителем).

Транспортно-технологические операции (22) осуществляются на ИРТ-МИФИ кран-балкой физического зала и предусматривают два типа работ: смену образца в облучательном устройстве, смену облучательного устройства.

Экспериментальные установки 13 Лабораторные Облучательные устройства установки Со сменой Специальные 16 образца 18 Аналоги 17 Без смены образца 19

Экспериментальные установки стенда

Следует отметить, что реакторные испытания предполагают значительную предварительную подготовку:

- отработка методики и испытания вне поля излучения на лабораторных установках (14), проведение исследований на аналогах
- облучательных устройств (17), которые полностью повторяют конструктивно облучательное устройства, но находятся вне поля излучения,
- отработка методики и испытания вне поля излучения на специальных лабораторных установках (15), которые устанавливаются в спецлабораториях и защитных камерах (проведение работ с плутониевым топливом),
- -используются облучательные устройства двух типов: со сменой(18) и без смены(19) образца в процессе испытаний.

Облучательные устройства и установки

И ПП	Наименование установки	Измеряемые характеристики	Температурный интервал
	·	Облучательные устройства.	
1	Каприз	Пластические свойства при сжатии, выход ГПД.	Менее 2300 К
2	Ритм	Пластические свойства при сжатии, акустическая эмиссия.	Менее 2300 К
3	Сатурн	Пластические свойства при сжатии в нестационарных условиях.	Менее 2300 К
4	Крип	Пластические свойства при сжатии.	Менее 2300 К
5	Циклон	Пластические свойства при реверсивном изгибе.	Менее 2300 К
6	Раст	Пластические свойства при сжатии.	Менее 1300 К
7	Пост	Формоизменение при облучении.	Менее 1300 К
8	Пост-Урал	. Формоизменение при облучении	Менее 1300 К
9	Раст-Урал	Пластические свойства при сжатии.	Менее 1300 К
		Лабораторные установки.	
10	Плутон	Пластические свойства при сжатии, смешанное топливо.	Менее 2300 К
11	Крип	Пластические свойства при сжатии.	Менее 2300 К
		Аналог облучательного устройства.	
12	ИС (испытатель- ный стенд)	Пластические свойства и акустическая эмиссия при реверсивном изгибе.	Менее 1800 К

Научные результаты

Экспериментальные возможности реакторного стенда ИРТ-МИФИ позволили впервые:

- -провести исследование механических свойств отечественного топлива энергетических реакторов,
- -оценить влияния на газовыделение пластической деформации диоксида урана при высоких температурах,
- -исследовать динамику радиационной аморфизации силицида урана и её влияние на пластические свойства,
- -обосновать разработку оксидного топлива с низким сопротивлением деформированию,
- **-**получить рекомендации для обоснования работоспособности и лицензирования твэлов энергетических реакторов.

Внедрения.

Облучательные устройства, разработанные на кафедре18 МИФИ, внедренные в практику НИР на ИРТ-МИФИ использованы как прототипы при разработках реакторных стендов на реакторах ВВР-СМ (Узбекистан г.Улукбек) и ИВВ-2 (Свердловская обл. г. Заречный).

Экспериментальные результаты исследования пластических свойств ядерного топлива и разработанные на их основе рекомендации для обоснования работоспособности и лицензирования твэлов энергетических реакторов внедрены в кодовые программы расчета надежности энергетических реакторов РФ.

Подготовка научных кадров

Научные исследования проведенные кафедрой 18 МИФИ при разработке и эксплуатации реакторных стендов для исследования физикомеханических свойств ядерного топлива представлены в более чем 200 научных публикациях.

По результатам научных исследований успешно защищены:

- три докторские диссертации,
- двенадцать кандидатских работ.
- более ста дипломных работ.

О заключительной части курса.

Заключительная часть курса будет посвящена рассмотрению конкретных примеров использования изложенных выше материалов в научной практике. В этом изложении, естественно, не может быть уже полностью решенных задач представленных в рамках курса.

Будут подробно рассмотрены две задачи:

-первая задача связана с использованием модельных представлений для восстановления физических параметров материала по экспериментальным данным.

Рассматриваются экспериментальные результаты исследования выхода газов-продуктов деления из ядерного топлива на основе диоксида урана различных технологий, которые удается описать двухстадийной диффузионной моделью. Сопоставление экспериментальных результатов с модельными представлениями дают возможность определить параметры переноса газов-продуктов деления в ядерном топливе.

О заключительной части курса.

-вторая задача посвящена объяснению эффекта воздействия пластической деформации на выход газов-продуктов деления.

В восьмидесятые годы прошлого века на ИРТ-МИФИ выполнялась программа сотрудничества с Францией по исследованию пластических свойств ядерного топлива в радиационных условиях.

Эксперименты по исследованию высокотемпературной ползучести в инициативном плане сопровождались регистрацией газов-продуктов деления (ГПД).

На образцах технологии DCI, обладающих повышенной пластичностью и низкими значениями выходов ГПД, были получены нетривиальные результаты.

При малых установившихся скоростях деформации ползучести выход ГПД был ниже стационарного выхода при отсутствии деформации и превышал его при больших скоростях.

Полученные результаты удается объяснить на основе диффузионно-конвективной модели миграции ГПД в ядерном топливе.