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OxBaTbIBaOLLUN annuncouna

BBepgeHue. [locTaHOBKa 3aaauM.
[TyCcTb B NpoCTpaHCTBE R" OaHbl M TOYeEK

a,,d,,...,a, €R"
TpebyeTtca NnocTpouTb annmMncons MUMHUManbHOro oobLema,
codepkalmm BHYTPU cebst BCe 3TN TOYKM.
O603Ha4Ynm Yyepes 4 matpuuy pasMepHOCTU nxm
CTONOLbI KOTOPON ABASAIOTCH BEKTOPAMU a,,4,,....a, € R"

A:[a1|a2|...|am].

OnpepenexHuve annuncounga:
annuncoun ¢ UEHTPOM B TOYKE ¢ onpegensercs Kak

E,. = {xeR” |(x—c)TQ(x—c)Sl};
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OxBaTbIBaKOLLUN annuncouna

here ¢ 1s the center of the ellipsoid and Q determines its
general shape. The volume of E,, . is given by the formula

7.7.11/2 | .
['(n/241) /detQ’

see Grotschel et al. (1998) for example. Here, 1'(-) 1s the
standard gamma function of calculus.

Under Assumption [, a natural formulation of the
minimum-volume covering ellipsoid problem is

(_MVCE‘) "Q'“‘.] det Q172

s.t. (a;—c¢)'0(a; —c) <1, i=1,...,m,

Q> 0.



OxBaTbIBaOLLUN annuncouna

As written, MVCE! is not a convex program. By the change
of variables

M=0"?" and z=0"%c,
we restate the problem as
(MVCE?) min (M. z) :=—Indet M

s.t. (Ma; —2)"(Ma; —2) < 1,

M =0,

which is now a convex program. If (M, Z) is a solution

of MVCE?, we recover the solution of MVCE' by setting
10.03.2012 (0, ) = (/\7[2 M—lf)



OxBaTbIBaOLLUN annuncoua

MVCE? can be rewritten as a log-determinant maximiza-
tion problem subject to linear equations and second-order

cone constraints:

(MVCE®)  min

M,z,y,w

S.L.

—Indet M

Ma,—z7—v,=0, i=1,...,m,
eSS W = (W}
(Vesw) €C3s 3= L1y,

M >0,

where C} denotes the second-order cone {(v,w) € R"™! |
|v|]| < w}. The format of MVCE? is suitable for a solution
using a slightly modified version of the software SDPT3
(see Toh et al. 1999, Tiitilincii et al. 2003), where the soft-

10.03.2012

barrier functions

ware 1s modified to handle the parameterized family of



Dual Reduced Newton Algorithm

In this section, we describe and derive our basic algorithm for the
minimum-volume covering ellipsoid problem; we call this algorithm the “dual
reduced Newton” algorithm for reasons that will soon be clear.

Newton Step
By adding a logarithmic barrier function to the problem
formulation MVCE?, we obtain the formulation

m

(MVCE;) min - —Indet M — 6> Int,
M,Z,1

=1

st. (Ma; —z)"(Ma;, —z2)+1t,=1,

M = 0.
> 0.

10.03.2012 6



Dual Reduced Newton Algorithm

The parameterized solutions to this problem as 6 varies
in the interval (0,o00) define the central trajectory of
the problem MVCE?. Identifying dual multipliers u;,, i =
l, ..., m, with the equality constraints in MVCEZ, the opti-
mality conditions for (MVCE%) can be written as

m

> u;[(Ma;—z)a] +a;(Ma; —z)"| —M~"' =0, (4)
=1

> u;(z—Ma;) =0, (5)
=1

(Ma,—2) (Ma, —2)+t=1, B=1,u.. 0 (6)
Ut =0e, (7)
u,t >0, (8)

10.03.2012
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Dual Reduced Newton Algorithm

We could attempt to solve (4)—(9) for (M, z, t, u) directly

by using Newton’s method. which would necessitate form-
ing and factorizing an

n(n+3 nn+3
( (s )+2m)><( {7+ )+2m)

matrix. However, as we now show, the variables M and z
can be directly eliminated, and further analysis will result
in only having to form and factorize a single m x m matrix.

10.03.2012



Dual Reduced Newton Algorithm

To see how this 1s done, note that we can solve (35) for z
and obtain

B MAu

eTu

-~

(10)

Substituting (10) into (4), we arrive at the following equa-
tion for the matrix M:

(AUAT Auu™AT

)M+M(AUAT —

|
=

AuuTAT)

eTu eTy

10.03.2012
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Dual Reduced Newton Algorithm

The following proposition, whose proof is in the appendix,
demonstrates an important property of the matrix arising
m (11):

PROPOSITION 2. Under Assumption 1, if u > 0, then
(AUAT — Auu™A"/e™u) > 0.

The following remark presents a closed-form solution for
the equation system (11); see Lemma 4 of Zhang and Gao
(2003):

REMARK 3. For a given § > 0, X := S~'? is the unique
positive definite solution of the equation system

1
S(XTS+5X)=X"".

10
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Dual Reduced Newton Algorithm

Utilizing Proposition 2 and Remark 3. the unique solu-
tion of (11) 1s easily derived:

B I r  Auu'AT U2 =
M:=M(u):=|2{ AUA" — , (12)

eTu

and substituting (12) into (10)., we conclude:

PROPOSITION 4. Under Assumption 1, if u > 0, then the
unique solution of (4), (5), and (9) in M, z is given by

|  AuuTAT\77? |
M = M(lvl) = |:2(AUAT = ”(,HTU )i| (13)
and
AuuTAT\ 7172
Z(AUAT i ) Au
Zi=2li) = it . (14)

elu

11
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Dual Reduced Newton Algorithm

Substituting (13) and (14) into the optimality condi-
tions (4)—(9), we can eliminate the variables M and 2
explicitly from the optimality conditions, obtaining the fol-
lowing reduced optimality conditions involving only the
variables (u, r):

h(u)+1=ce,
Lit=fe. (1

ton
—

r >0

12
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Dual Reduced Newton Algorithm

where /1;(u) 1s the following nonlinear function of u:

h(u) :=(Mu)a, —z(u))" (M(u)a; — z(u))

| . 7% ol B 3 »  Auu'AT ™
a; — 2| AUA" —
eTu ey
( Au) (16)
| a; — : )
L

for i =1,...,m, where M(u) and z(u) are specified
by (13) and (14).

13
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Dual Reduced Newton Algorithm

For a given value of the barrier parameter 6, we
will attempt to approximately solve (15) using Newton's
method. Let V, h(u) denote the Jacobian matrix of h(u).
The Newton direction (Au, At) for (15) at the point (u, 1)
is then the solution of the following system of linear equa-
tions i (Au, Ar):

V.h(u)Au+ At=r;:=e—t— h(u),

(17)
TAu+UAt=r, :=0e— Ut.
This system will have the unique solution
Au=(Vh(u)—U'T)Y(r, —U'r), e
(18)

At =U"'r,— U~'TAu,

provided we can show that the matrix (V, h(u) —U™'T) is
nonsingular.

14
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Dual Reduced Newton Algorithm

To implement the above methodology, we need to explic-
itly compute V h(u), and we also need to show that
(V. h(u) — U™'T) is nonsingular. Towards this end, we
define the following matrix function:

_ Aue™\T ' Aue’ —_—
()= (A— ) M“(u)(A— ) (19)

eTu eluy

as a function of the dual variables u. Let A o B denote the
Hadamard product of the matrices A, B, namely (Ao B);; :=
A;B;; tor i, j=1,..., m. The following result conveys an
explicit formula for V, i(u) and also demonstrates other
useful properties.

15
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Dual Reduced Newton Algorithm

PROPOSITION 5. Under Assumption 1,
(i) V. h(u)==2Z(u)/eTu+3(u) o 2(u)),
(11) V,h(u) <0, and
(i11) h(u) =diag(2(u)).

The proof of this proposition is presented in the
appendix. From part (i1) of Proposition 5 and the fact that
U~'T - 0 whenever u, t > 0, we then have

COROLLARY 6. Under Assumption 1, if u >0 and t > 0,
then (V,h(u)—U™'T) <0, and so is nonsingular.

Now let us put all of this together. To compute the
Newton direction (Au, Ar) for the reduced optimality con-
ditions (15) at a given point (u, ), we compute according
to the following procedure:

16
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Dual Reduced Newton Algorithm

Procedure DRN-DIRECTION(u, 7, 6): Given (u, 1) satis-
fying u,t > 0 and given 6 > 0,
Step 1. Form and factorize the matrix

M~ (u) = [2(AUAT _ A””TAT)]

eTu

Step 2. Form the matrix

" Aue™\T._ . AueT
E(u):(A— r )M“(H)(A— i )

eTu ety

Step 3. Form
S (1
V. h(u) = —2( =)

eTu
and factorize (V, h(u) —U™'T).
Step 4. Solve (18) for (Au, At).

+E(u)o§(u)>

17
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Dual Reduced Newton Algorithm

Note from (10) that ¢ = M~'z = Au/e’u, which states
that the center of the optimal ellipsoid 1s a convex weight-
ing of the points a,,...,a,, with the weights being the
normalized dual variables u;/e'u, i =1,...,m. It is also
easy to see that when 6 =0, the complementarity condition
u.t. = 6 =0 has a nice geometric interpretation: A point has
positive weight u; only if it lies on the boundary of the opti-
mal ellipsoid. These observations are well-known. Another
property is that if one considers the points a,,...,a, to
be a random sample of m 1.1.d. random vectors. then with
u:=e/m we have that

5 2 Aee® X AeeT\'"
M2w)=>(A-25 ) i )
m m n

1s proportional to the sample covariance matrix.

18



Dual Reduced Newton Algorithm

Based on the Newton step procedure outlined ealier, we construct the following basic
interior-point algorithm for solving the MVCE ? ‘formulation of the minimum volume’

covering ellipsoid problem.
We name this algorithm “DRN” for dual reduced Newton algorithm.

Newton Step

By adding a logarithmic barrier function to the problem
formulation MVCE?, we obtain the formulation

m

(MVCE;) {'}ﬁn —IndetM — 6> Int,
M,Z,1 o

st. (Ma, —2)"(Ma;, —z)+1t,=1,

M =0,

t> 0.
10.03.2012 19
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Dual Reduced Newton Algorithm

The parameterized solutions to this problem as 6 varies
in the interval (0,o0) define the central trajectory of
the problem MVCE?. Identifying dual multipliers u,, i =
[, ..., m, with the equality constraints in MVCEZ, the opti-
mality conditions for (MVCE%,) can be written as

m

> u,-[(Ma,- —2)a] +a;(Ma; — :,)T] —M1=0, (4)
i=1

> u;(z—Ma,;) =0, (5)
=1

(Ma, —z)"(Ma, —2)+t,=1, i=1,...,m, (6)
Ut =0e, (7)
u.t >0, (8)

M = 0. 9)

20



Dual Reduced Newton Algorithm

We could attempt to solve (4)—(9) for (M, z, t, u) directly

by using Newton’s method, which would necessitate form-
ing and factorizing an

n(n+3 1(n+3
( g )+2m)><(l('+ )+2m)

? $,

matrix. However, as we now show, the variables M and Z
can be directly eliminated, and further analysis will result
in only having to form and factorize a single m x m matrix.

10.03.2012
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Dual Reduced Newton Algorithm

To see how this is done, note that we can solve (5) for 2
and obtain

B MAu

eTu

-~

<

(10)

Substituting (10) into (4). we arrive at the following equa-
tion for the matrix M:

(AUAT— =M.

(11)

AuuTAT )M 3 M(AUAT AuuTAT )

eTu eluy

10.03.2012 22
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Dual Reduced Newton Algorithm

The following proposition, whose proof is in the appendix,
demonstrates an important property of the matrix arising
m (11):

PROPOSITION 2. Under Assumption 1, if u > 0, then
(AUAT — Auu™A"/e™u) > 0.

The following remark presents a closed-form solution for
the equation system (11); see Lemma 4 of Zhang and Gao
(2003):

REMARK 3. For a given S > 0, X := S~'2 is the unique

positive definite solution of the equation system

1
;(XTS+SX) =X

23
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Dual Reduced Newton Algorithm

Utilizing Proposition 2 and Remark 3. the unique solu-
tion of (11) 1s easily derived:

a B 7' - Auu'AT e p
M:=M(u):=|2| AUA" — . (12)

eTu

and substituting (12) into (10). we conclude:

PROPOSITION 4. Under Assumption 1, if u > 0, then the
unique solution of (4), (5), and (9) in M, z is given by

- AuuTAT —1/2
M :=M(u) = [E(AUAT — l:;” ):| (13)
and
AuuTAT\ 1712
2(AUAT — Au
7 =2l ‘= & : (14)

ey

24
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Dual Reduced Newton Algorithm

Substituting (13) and (14) into the optimality condi-
tions (4)—(9). we can eliminate the variables M and Z
explicitly from the optimality conditions, obtaining the fol-
lowing reduced optimality conditions nvolving only the
variables (u, 1):

h(u)+1t=e,
it —=6e, (1

N
—

u,t =0,

25
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Dual Reduced Newton Algorithm

where 5.(u) is the following nonlinear function of u:

h.(u):

(M(u)a; — (H))( (u)a; —z(u))

 Au = Aun’ATY]
a. — 2 AUA" —
eTu eTu
Au o
s (li =S pT” : ( 16)

for it = 1,...,m, where M(u) and z(u) are specified
by (13) and (14).

26
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Dual Reduced Newton Algorithm

For a given value of the barrier parameter 6, we
will attempt to approximately solve (15) using Newton's
method. Let V, h(u) denote the Jacobian matrix of /h(u).
The Newton direction (Au, At) for (15) at the point (u, 1)
is then the solution of the following system of linear equa-
tions in (Au, Ar):

V.h(u)Au+At=ry:=e—t—h(u),

| (17)
TAu+4 UANt =r, :=0e— UL.
This system will have the unique solution
Au=(V h(u)—U'T) ' (r,— U 1), |
(18)

At=U""r,— U 'TAu,

provided we can show that the matrix (V, h(u) —U™'T) is
nonsingular.

27
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Dual Reduced Newton Algorithm

To implement the above methodology, we need to explic-
itly compute V h(u). and we also need to show that
(V. h(u) — U™'T) is nonsingular. Towards this end, we
define the following matrix function:

o Aue™\" . Aue’ o
2.(u) := (A— ) M“(u)(A— ) (19)

ety eTu

as a function of the dual variables u. Let A o B denote the
Hadamard product of the matrices A, B, namely (Ao B),; :=
A;B;; tor i, j=1,..., m. The following result conveys an
explicit formula for V,i(u) and also demonstrates other
useful properties.

28
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Dual Reduced Newton Algorithm

PROPOSITION 5. Under Assumption 1,
(i) V,h(u)==2(Z(u)/eTu+2(u) o 2(u)),
(11) V, h(u) <0, and
(111) h(u) = diag(X(u)).

The proof of this proposition is presented in the
appendix. From part (i1) of Proposition 5 and the fact that
U='T = 0 whenever u, t > 0, we then have

COROLLARY 6. Under Assumption 1, if u >0 and t > 0,
then (V,h(u) —U™'T) <0, and so is nonsingular.

Now let us put all of this together. To compute the
Newton direction (Au, Ar) for the reduced optimality con-
ditions (15) at a given point (u, ), we compute according
to the following procedure:

29
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Dual Reduced Newton Algorithm

Procedure DRN-DIRECTION(u, 7. 6): Given (u, t) satis-
fying u, r > 0 and given 6 > 0,
Step 1. Form and factorize the matrix

M™2(u) = [2(AUAT _ A””TAT)]

eTu

Step 2. Form the matrix

Aue™\" [/ AueT
E(zl):(A— i )M“(H)(A— = )

eTu elu

Step 3. Form
=
V h(u) = —2(“(”)

eTu

+E(u)o§(u)>

and factorize (V, h(u) —U~'T).
Step 4. Solve (18) for (Au, Ar).

30
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Dual Reduced Newton Algorithm

The computational burden of each of the four steps in
Procedure DRN-DIRECTION is dominated by the need
to factorize the matrices in Steps (1) and (2) above. The
matrix (AUAT — AuuA"/e"u) in Step (1) is n x n; it
requires mn* operations to form and n’ steps to factorize,
while the matrix (V, h(u) — U™'T) in Step (4) is m x m; it
requires nm? steps to form and m? steps to factorize.

31
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Dual Reduced Newton Algorithm

Note from (10) that ¢ = M~z = Au/e’u, which states
that the center of the optimal ellipsoid 1s a convex weight-
ing of the points «a,....,a,, with the weights being the
normalized dual variables u,/e’u, i=1,....,m. It is also
easy to see that when 6 = 0. the complementarity condition
u;1; = 0 =0 has a nice geometric interpretation: A point has
positive weight u; only if it lies on the boundary of the opti-
mal ellipsoid. These observations are well-known. Another
property is that if one considers the points a,,...,a, to
be a random sample of m 1.1.d. random vectors, then with
u:=e/m we have that

: 2 Aee’ Aee™\"
M‘“(u):—(A— - )(A— = )
m m m

is proportional to the sample covariance matrix.
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Dual Reduced Newton Algorithm

Algorithm DRN

Based on the Newton step procedure outlined earlier, we construct the following basic
interior-point algorithm for solving the MVCE; ' formulation of the minimum volume
covering ellipsoid problem. We name this algorithm “DRN” for dual reduced Newton
algorithm.

Algorithm DRN

Step 0. Initialization. Set r < 0.99. Choose initial val-
ues of (u, 1°) satisfying u®, 1° > 0. Set (u, t) < (u°, 1°).

Step 1. Check Stopping Criteria. OBJ := — Indet| M (u)].
If ||[e—h(u)—t|| <€ and (u’t)/OBIJ < €,, STOP. Return u,
Q:=[Mu))?, c:=[M(u)]"'z(u) and OBJ.

Step 2. Compute Direction. Set 6 <« (u’t)/10m. Com-
pute (Au, At) using Procedure DRN-DIRECTION(u, 1, 6).

Step 3. Step-Size Computation and Step. Compute B«
max{f | (u.t) + B(Au, Ar) > 0} and B < min{rpB. 1}. Set

1003201 (u, 1) < (u, 1)+ B(Au, Ar). Go to Step 1.
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