Поле в диэлектрике

1. Между пластинами плоского конденсатора, находящимися на расстояние d=5мм друг от друга, приложено напряжение U=150В. К одной из пластин прилегает плоскопараллельная пластинка фарфора толщиной b=3мм. Найти напряженности электрического поля E_1 , E_2 в воздухе и фарфоре. Диэлектрическая

проницаемость фарфора равна 6.

$$U=150B,$$

Найти: *E*₁, *E*₂ - ?

$$U=U_1+U_2$$

$$D_{1n} = D_{2n}$$

$$\varepsilon_1 \varepsilon_0 E_1 = \varepsilon_2 \varepsilon_0 E_2$$
 $E_2 = \frac{\varepsilon_1}{\varepsilon_2} E_1$

$$U = E_1(d-b) + \frac{\varepsilon_1}{\varepsilon_2} E_1 b \qquad E_1 = \frac{U\varepsilon_2}{\varepsilon_2(d-b) + \varepsilon_1 b}$$

Ответ: $E_1 = 60 \kappa B/m$; $E_2 = 10 \kappa B/m$.

2. Площадь пластин плоского воздушного конденсатора $S=0,01m^2$, расстояние между ними d=5mm. К пластинам приложена разность потенциалов $U_1=300B$. После отключения конденсатора от источника напряжения пространство между пластинами заполняется эбонитом. Какова будет разность потенциалов U_2 между пластинами после заполнения? Найти емкости конденсатора C_1 , C_2 и поверхностные плотности заряда σ_1 , σ_2 на пластинах до и досле заполнения.

Дано

$$S=0,01M^{2},$$
 $d=5MM,$
 $U_{1}=300B,$
Haŭtu: $U_{2},$
 $C_{1}, C_{2}, \sigma_{1}, \sigma_{2}$

$$C_1 = \frac{\varepsilon_0 \varepsilon_1 S}{d}$$

$$C_2 = \frac{\varepsilon_0 \varepsilon_2 S}{d}$$

$$q_1 = q_2$$

$$C_1U_1=C_2U_2$$

$$U_2 = \frac{C_1}{C_2}U_1 = \frac{\varepsilon_1}{\varepsilon_2}U_1$$

$$\sigma_1 = \sigma_2 = \frac{q}{S} = \frac{C_1 U_1}{S} = \frac{\varepsilon_0 \varepsilon_1 U_1}{d}$$

Ответ:

3. Решить предыдущую задачу для случая, когда заполнение пространства между пластинами диэлектриком производится при включенном источнике напряжения.

Дано: $S=0.01 M^2$, d=5 M M, $U_1=300 B$ Найти: U_2 , C_1 , C_2 , σ_1 , σ_2

$$C_{1} = \frac{\varepsilon_{0}\varepsilon_{1}S}{d}$$

$$U = U_{1} = U_{2}$$

$$Q_{1} = \frac{\varepsilon_{0}\varepsilon_{2}S}{d}$$

$$Q_{1} = \frac{C_{1}U}{d}$$

$$Q_{2} = \frac{\varepsilon_{0}}{d}$$

$$Q_{1} = \frac{C_{1}U}{C_{2}}$$

$$Q_{2} = \frac{\varepsilon_{1}U}{\varepsilon_{2}}$$

$$Q_{3} = \frac{C_{1}U}{C_{2}}$$

$$Q_{4} = \frac{C_{1}U}{C_{2}}$$

$$Q_{5} = \frac{C_{1}U}{C_{5}}$$

$$\sigma_2 = \frac{q_2}{S} = \frac{\varepsilon_2 \varepsilon_0 U}{d}$$

Ответ:

4. Площадь пластин плоского конденсатора $S=0,01m^2$, расстояние между ними d=1cm. К пластинам приложено напряжение U=300B. В пространстве между пластинами находятся плоскопараллельная пластинка стекла толщиной b=0,5cm и плоскопараллельная пластинка парафина толщиной c=0,5cm. Найти напряженность электрического поля E_1 , E_2 и падение потенциала U_1 , U_2 в каждом слое. Каковы будут при этом емкость конденсатора C и поверхностная плотность заряда σ на пластинах?

Дано:
$$U=U_1+U_2 \\ S=0.01 M^2, \\ d=1 c M, \\ U=300 B, \\ b=0.5 c M, \\ \varepsilon=0.5 c M, \\$$

$$C = \frac{C_1 C_2}{C_1 + C_2} \qquad C_1 = \frac{\varepsilon_1 \varepsilon_0 S}{b} \qquad C_2 = \frac{\varepsilon_2 \varepsilon_0 S}{c}$$

$$C = \frac{\varepsilon_1 \varepsilon_2 \varepsilon_0 S}{\varepsilon_1 c + \varepsilon_2 b} =$$

$$\sigma = \frac{q}{S} = \frac{UC}{S} =$$

Omsem: E_1 =15κB/м; E_2 =45κB/м; U_1 =75B, U_2 =225B; C=26,6πΦ; σ =0,8мκΚπ/м².

5.Между пластинами плоского конденсатора, находящимися на расстоянии d=1см друг от друга, приложено напряжение $U_1=100$ В. К одной из пластин прилегает плоскопараллельная пластинка бромистого таллия толщиной b=9,5мм с относительной диэлектрической проницаемостью $\varepsilon=173$. После отключения конденсатора пластинку вынимают. Каково будет после этого напряжение U_2 на пластинах конденсатора ?

Дано:
$$d=1$$
См, $U_1=100$ В, $C_2=\frac{\varepsilon_0 S}{d}$
 $C_1'=\frac{\varepsilon_0 S}{d-b}$
 $C_1'=\frac{\varepsilon_0 S}{d}$
 $C_1'=\frac{\varepsilon_0 S}{d-b}$
 $C_1'=\frac{\varepsilon_0 S}{c_1'+c_2'}=\frac{\varepsilon_0 S}{[(1-\varepsilon_2)b+\varepsilon_2 d]}$
 $C_1'=\frac{\varepsilon_0 S}{c_1'+c_2'}=\frac{\varepsilon_0 S}{[(1-\varepsilon_2)b+\varepsilon_2 d]}$

Ответ: U₂=1,8кВ

6. Плоский конденсатор заполнен диэлектриком и заряжен до энергии *W=20мкДж*. После того как конденсатор отключили от источника напряжения, диэлектрик вынули из конденсатора, совершив работу A=70мкДж. Найти диэлектрическую проницаемость ε диэлектрика.

Дано:

W=20мкДж, *A=70мкДж*.

Найти: ε - ?

$$A = W_2 - W_1$$

$$W_1 = \frac{1}{2} \cdot \frac{q^2}{C_1} \qquad C_2 = \frac{C_1}{\varepsilon}$$

$$W_2 = \frac{1}{2} \cdot \frac{q^2}{C_2} = W_1 \varepsilon$$

$$A = W_1 (\varepsilon - 1)$$

твет:

7.Электрическое поле создается точечным диполем с электрическим моментом p=0,1нKл \cdot м. Чему равна разность потенциалов $\Delta \phi$ между двумя точками, расположенными симметрично на оси диполя на расстоянии r=10см от его центра?

Дано: *p=0,1нКл · м, r=10см.* **Найти:** ∆*ф* - ?

$$A \xrightarrow{r} \xrightarrow{q} \xrightarrow{\rho} B$$

$$\varphi = \frac{\rho \cos \alpha}{4\pi \varepsilon_0 r^2}$$

$$\alpha_A = \pi (\cos \pi = -1)$$

$$\alpha_B = 0 (\cos 0 = 1)$$

$$\Delta \varphi = \left| \varphi_B - \varphi_A \right| = \frac{2\rho}{4\pi \varepsilon_0 r^2}$$

Ответ: $\Delta \phi = 180$ В.

8. Пространство между пластинами плоского конденсатора заполнено стеклом. Площадь пластин конденсатора $S=0,01 \, \mathrm{M}^2$. Пластины конденсатора притягиваются друг к другу с силой *F=4,9мН*. Найти поверхностную

плотность связанных зарядов на стекле.
$$F = qE \qquad E = \frac{\sigma}{2\varepsilon\varepsilon_0}$$
 $F = 4.9$ $G = 7$ $F = \frac{\sigma S \cdot \sigma}{2\varepsilon\varepsilon_0} = \frac{\sigma^2 S}{2\varepsilon\varepsilon_0}$ $F = \frac{\sigma S \cdot \sigma}{2\varepsilon\varepsilon_0} = \frac{\sigma^2 S}{2\varepsilon\varepsilon_0}$

Найти:
$$\sigma' = ?$$
 $F = \frac{\sigma S \cdot \sigma}{2\varepsilon\varepsilon_0} = \frac{\sigma^2 S}{2\varepsilon\varepsilon_0}$ $F = \frac{\varepsilon\varepsilon_0 E^2 S}{2}$ $E = \sqrt{\frac{2F}{\varepsilon\varepsilon_0 S}}$ $E = E_0 - E'$ $E_0 = \varepsilon E$ $E' = \frac{\sigma'}{\varepsilon_0}$ $E' = \frac{\sigma'}{\varepsilon_0}$ $E' = \frac{\sigma'}{\varepsilon_0}$

 $E = \varepsilon E - \frac{\sigma'}{\varepsilon_0} \quad \sigma' = \varepsilon_0 E(\varepsilon - 1)$

9. Пространство между пластинами плоского конденсатора заполнено диэлектриком. Расстояние между пластинами d=2mm. На пластины конденсатора подана разность потенциалов $U_1=0,6k$. Если, отключив источник напряжения, вынуть диэлектрик из конденсатора, разность потенциалов на пластинах возрастет до $U_2=1,8k$. Найти поверхностную плотность связанных зарядов на диэлектрике и его диэлектрическую восприимчивость χ .

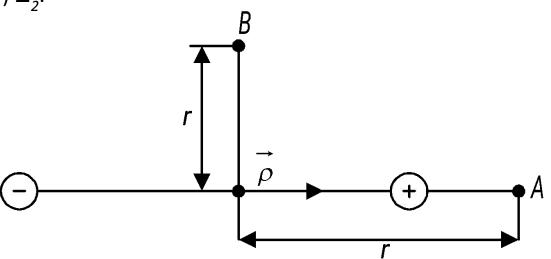
$$q_1=q_2=q$$
Дано: $U_1C_1=U_2C_2$
 $U_2=0,6\kappa B,$ $U_2=1,8\kappa B,$ Найти: χ -? σ '=? $\varepsilon=\frac{C_1}{C_2}=\frac{U_2}{U_1}$ χ
 σ '= P_n
 σ '= $\varepsilon_0 E(\varepsilon-1)$

$$E = \frac{U_1}{d}$$

$$\sigma' = \varepsilon_0 \frac{U_1}{d} \left(\frac{U_2}{U_1} - 1 \right)$$

$$\chi = \varepsilon - 1 = \frac{U_2}{U_1} - 1$$

$$\sigma' = 5,3 \left(\frac{M\kappa Kn}{M^2} \right)$$


10. Найти напряженность поля E, созданного диполем, электрический момент которого $p=6,2\cdot 10^{-30}$ Кл·м, на расстоянии $r=3\cdot 10^{-7}$ см от середины диполя в точке, лежащей: а) на продолжении диполя; б) на перпендикуляре к диполю.

Дано:

$$E = \frac{\rho}{4\pi\varepsilon_0 r^3} \sqrt{1 + 3\cos^2 \alpha}$$

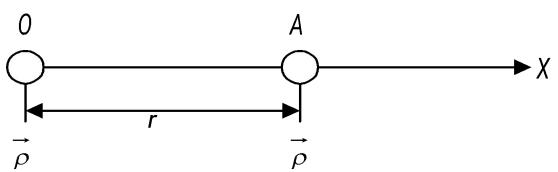
$$\alpha = 0$$

6)
$$E_{2}$$

$$E_A = \frac{\rho}{2\pi\varepsilon_0 r^3}$$

$$\frac{\pi}{2} \left(\cos \frac{\pi}{2} = 0 \right)$$

$$E_B = \frac{\rho}{4\pi\varepsilon_0 r^3}$$


$$E=4,1\cdot 10^6 B/m;$$

11. Найти силу взаимодействия F двух молекул воды, электрические моменты которых расположены вдоль одной прямой. Молекулы находятся на расстоянии $r=2,5\cdot\cdot 10^{-7}$ см друг от друга. Электрический момент молекулы воды $p=6,2\cdot 10^{-30}$ Кл \cdot м.

Дано:

r=2,5··10⁻⁷см, p=6,2·10⁻³⁰Кл·м.

Найти: *F* - ?

$$F_X = p \frac{\partial E}{\partial x} \cos \alpha$$

$$E_X = \frac{p}{4\pi\varepsilon_0 x^3} \sqrt{1 + \cos^2 \alpha}$$

$$\cos 0 = 1$$

$$E(x) = \frac{\rho}{2\pi\varepsilon_0 x^3}$$

$$\frac{\partial E}{\partial x} = -\frac{3\rho}{2\pi\varepsilon_0 x^4}$$

$$F_{x} = -\frac{3\rho^{2}}{2\pi\varepsilon_{0}x^{4}}$$

Ответ: F=-5,3 · 10⁻¹⁴Н.

12. Диполь с электрическим моментом $p=5,1\cdot\cdot 10^{-29}$ Кл·м находится на расстоянии r=10 см от длинного провода однородно заряженного с линейной плотностью заряда t=72 н Кл/м. Найти модуль силы F, действующей на диполь, если вектор p направлен нормально к проводу.

Дано: *p=5,1··10⁻²⁹Кл·м, r=10см, т=72нКл/м.* **Найти:** *F* - ?

$$F_r = \rho \frac{\partial E}{\partial r} \cos \alpha$$

$$\cos 0 = 1$$

$$\frac{\partial E}{\partial r} = -\frac{\tau}{2\pi\varepsilon_0 r^2}$$

$$\begin{array}{c|c}
\tau \\
0 \\
\hline
A
\end{array}$$

$$F = -\frac{\rho\tau}{2\pi\varepsilon_0 r^2}$$

Ответ: *F*=-6,6··10⁻²⁴*H*.