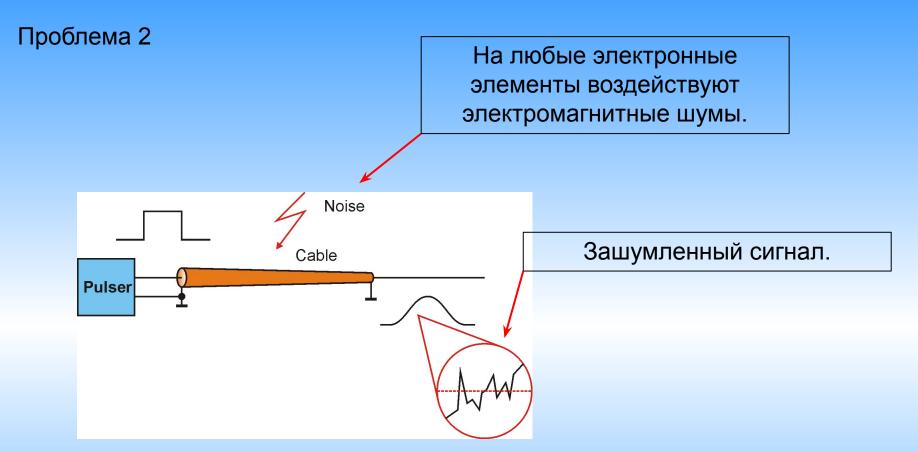
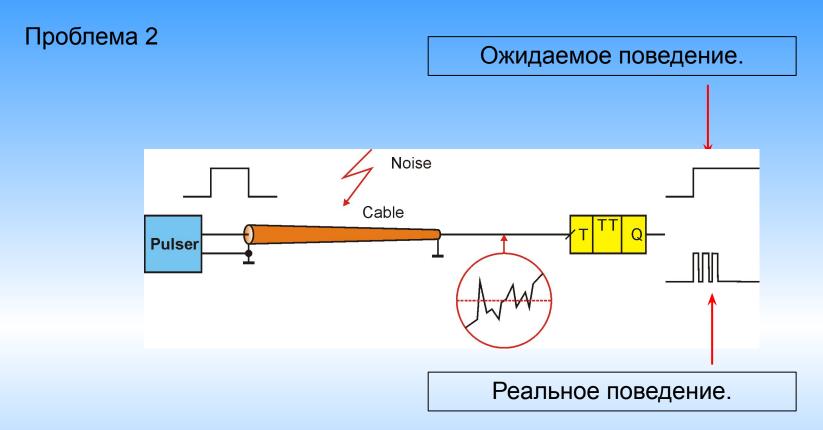


Триггер Шмитта Генераторы импульсов

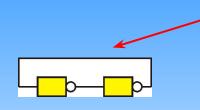
Schmitt trigger


Кабель

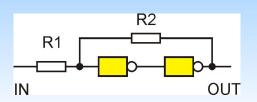
Проблема 1


Фронты импульса в конце кабеля не могут использоваться в качестве цифровых событий!

Шумы

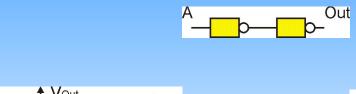

Вместо одного фронта имеем несколько!

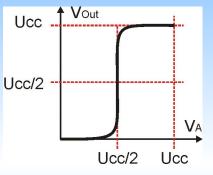
Шумы


Даже если фронты не слишком растянуты, схема ведет себя непредсказуемо!

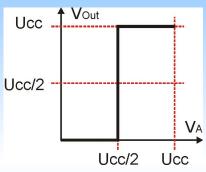
Простейший триггер

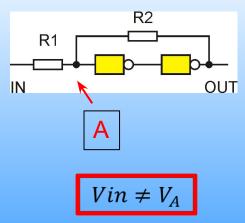
100% обратная связь. Сигнал полностью передается с выхода устройства на его вход.


Триггер Шмитта

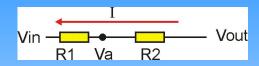


<100% обратная связь.</p>
Сигнал частично
передается с выхода
устройства на его вход.
На вход IN можно
подавать сигнал не
устраивая короткое
замыкание.

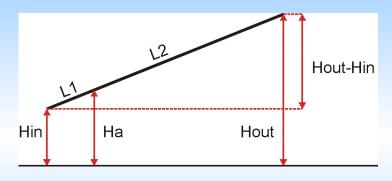

Как это работает


КМОП

Делитель напряжения

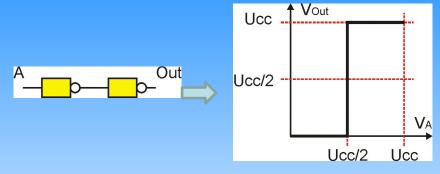

$$V_A = V_{IN} + I \times R1$$

$$I = \frac{V_{OUT} - V_{IN}}{R1 + R2}$$

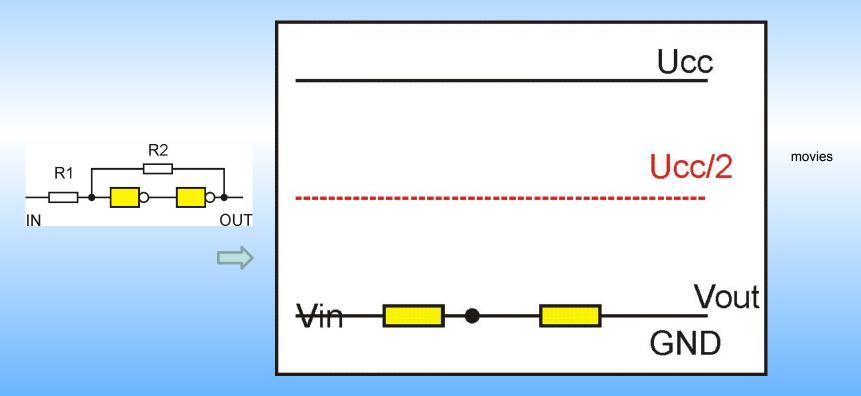

$$V_A = V_{IN} + \left(\frac{V_{OUT} - V_{IN}}{R1 + R2}\right) \times R1$$

Напряжение Va всегда находится между напряжениями Vin и Vout.

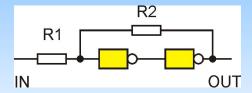
Делитель напряжения. Аналогия с качелями.

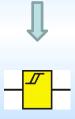


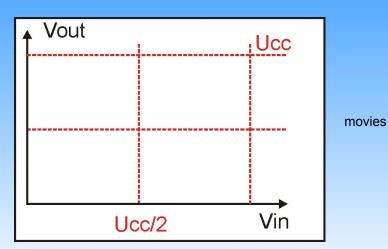
$$V_A = V_{IN} + \left(\frac{V_{OUT} - V_{IN}}{R1 + R2}\right) \times R1$$

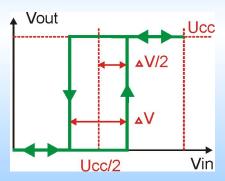


$$H_A = H_{IN} + \left(\frac{H_{OUT} - H_{IN}}{L1 + L2}\right) \times L1$$

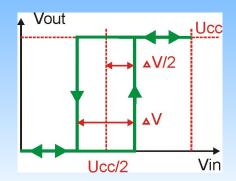

Как это работает

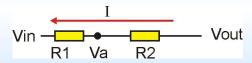


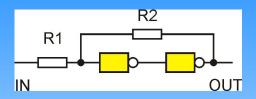

На выходе может быть либо 0, либо 1.



Гистерезис

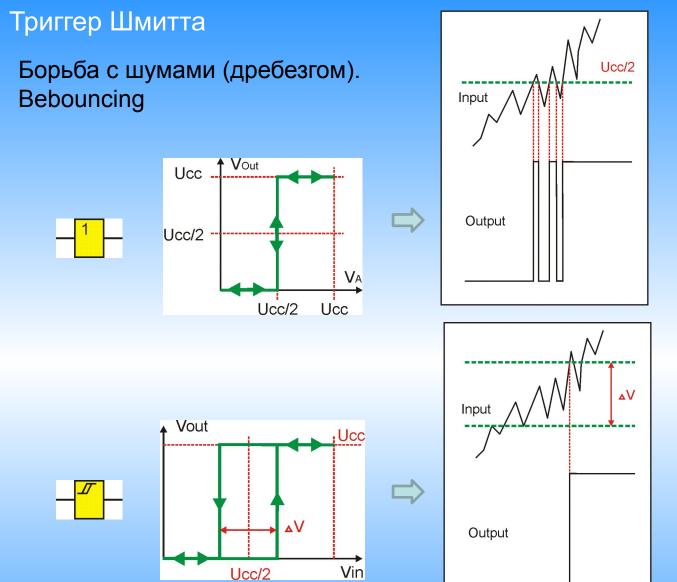






Гистерезис. Расчет.

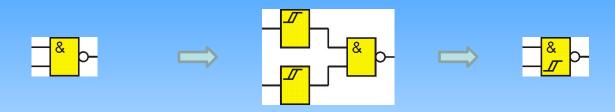
В точке переключения


$$\frac{\Delta V}{2} = Vin - \frac{Ucc}{2} = I \times R1$$

$$I = \frac{Ucc - \frac{Ucc}{2}}{R2} = \frac{Ucc}{2 \times R2}$$

$$\frac{\Delta V}{2} = \frac{Ucc}{2} \times \frac{R1}{R2}$$

$$\Delta V = Ucc \times \frac{R1}{R2}$$


$$\frac{R1}{R2} < 1$$

Размах шумовой составляющей должен быть меньше величины гистерезиса.

Дополнительный бонус: обострение фронта.

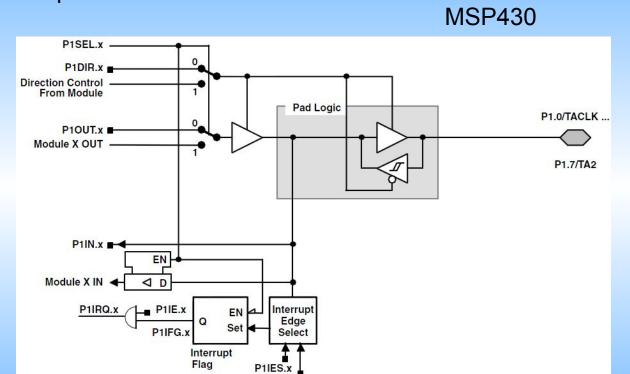
Защита входов микросхем

Логическая функция не изменилась. Схема стала более устойчива к шумам и затянутым фронтам

Простая логика с триггерами Шмитта на входах

Туре	Function	Quantity
74HC14	NOT	6
CD40106	NOT	6
74HC132	2NAND	4
CD4093	2NAND	4

Параметры

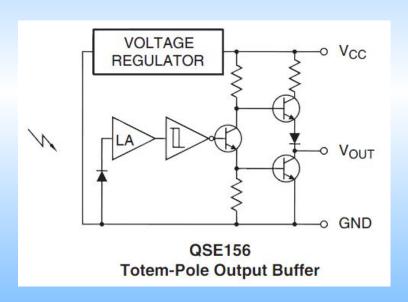

74HC14

Symbol	Parameter	Conditions	T _{amb} = 25 °C			T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC14		•								
V _{T+}	positive-going threshold voltage	V _{CC} = 2.0 V	0.7	1.18	1.5	0.7	1.5	0.7	1.5	٧
		V _{CC} = 4.5 V	1.7	2.38	3.15	1.7	3.15	1.7	3.15	٧
		V _{CC} = 6.0 V	2.1	3.14	4.2	2.1	4.2	2.1	4.2	٧
V _{T-}	negative-going threshold voltage	V _{CC} = 2.0 V	0.3	0.52	0.9	0.3	0.9	0.3	0.9	٧
		V _{CC} = 4.5 V	0.9	1.4	2.0	0.9	2.0	0.9	2.0	٧
		V _{CC} = 6.0 V	1.2	1.89	2.6	1.2	2.6	1.2	2.6	٧
Vн (hysteresis voltage	V _{CC} = 2.0 V	0.2	0.66	1.0	0.2	1.0	0.2	1.0	٧
		V _{CC} = 4.5 V	0.4	0.98	1.4	0.4	1.4	0.4	1.4	٧
		V _{CC} = 6.0 V	0.6	1.25	1.6	0.6	1.6	0.6	1.6	٧

Защита входов сложных микросхем

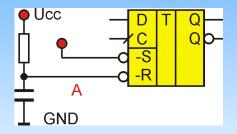
Микроконтроллеры

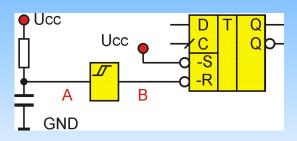
P1SEL.x

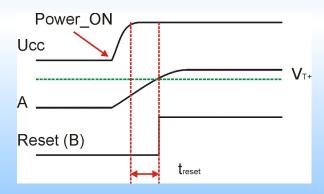

Внешний


мир

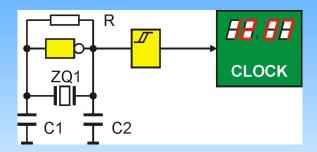
В составе приемников сигналов

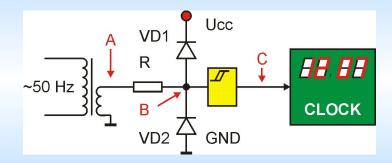

OPTOLOGIC® Photosensor

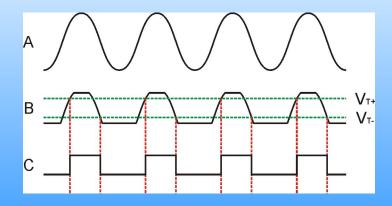



Reset generator

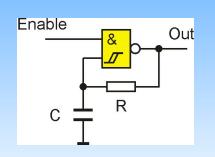
Плохо

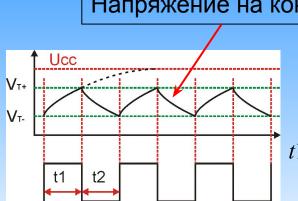

Хорошо




Формирователь прямоугольных импульсов

Правильные часы


Менее точные часы


Генератор импульсов

Relaxation oscillator

$$T = t1 + t2$$

$$t1 = RC \times \ln \left(\frac{Ucc - V_{T-}}{Ucc - V_{T+}} \right)$$

$$t2 = RC \times \ln\left(\frac{V_{T+}}{V_{T-}}\right)$$

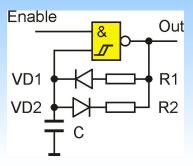
$$T = RC \times \ln \left(\frac{Ucc - V_{T-}}{Ucc - V_{T+}} \times \frac{V_{T+}}{V_{T-}} \right)$$

Для микросхемы 74НС14

R<10 MOm

 $T \approx 0.9 \times RC$

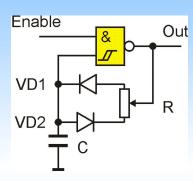
Для типовых значений


 $T \approx (0.8 \div 1.1) \times RC$

С учетом разброса

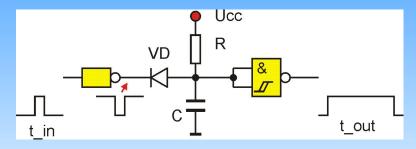
Генератор импульсов 2

Независимая настройка t1 и t2



$$t1 = R1C \times \ln \left(\frac{Ucc - V_{T-}}{Ucc - V_{T+}} \right)$$
$$t2 = R2C \times \ln \left(\frac{V_{T+}}{V_{T-}} \right)$$

$$T = R1C \times \ln\left(\frac{Ucc - V_{T-}}{Ucc - V_{T+}}\right) + R2C \times \ln\left(\frac{V_{T+}}{V_{T-}}\right)$$


PWM Pulse Width Modulation ШИМ Широтно-импульсная модуляция

$$|T = t1 + t2 \approx const|$$

Pacширитель импульсов Pulse stretcher

$$T = t_{in} + RC \times \ln \left(\frac{Ucc - V_{T-}}{Ucc - V_{T+}} \right)$$

Необходимо помнить, что при слишком большом конденсаторе может сгореть нижний выходной транзистор инвертора.

$$\left|I_{OUT_{0}} > \frac{C \times Ucc}{t_{in}} + \frac{Ucc}{R}\right|$$