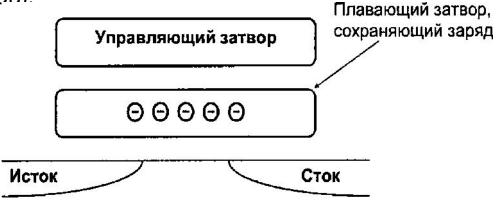
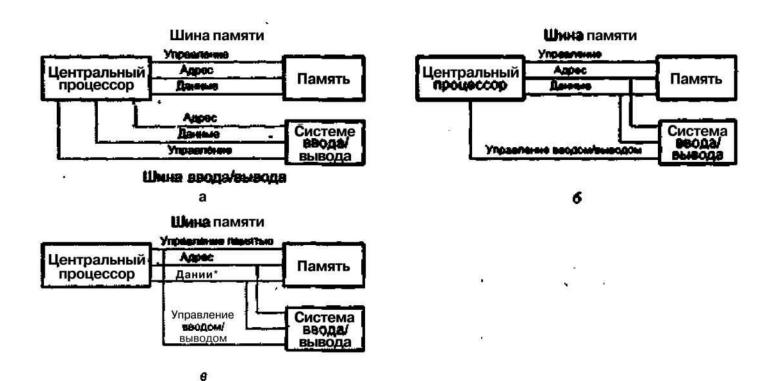

Проектирование центральных и периферийных устройств ЭВС

Жесткие диски

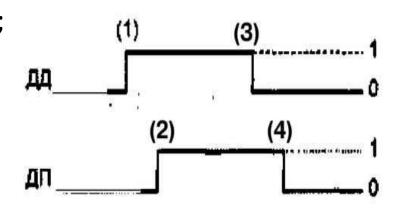




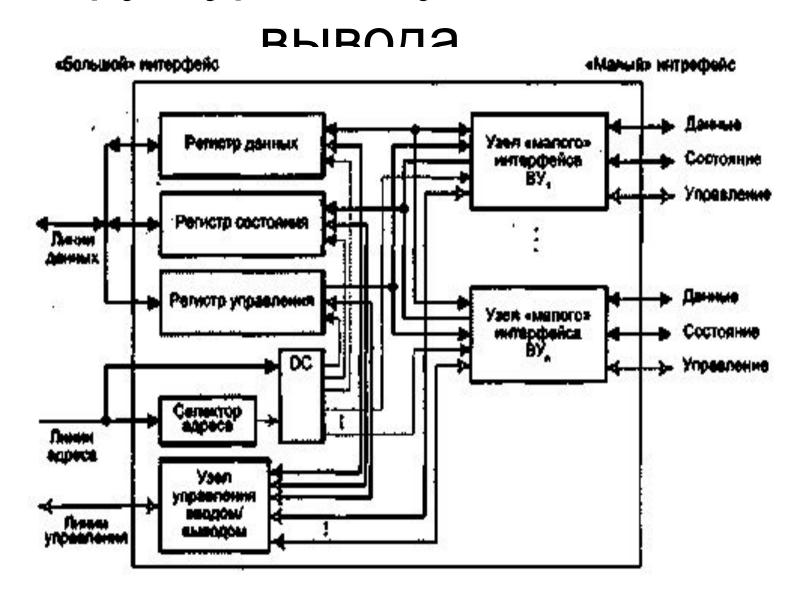
Флэш-память

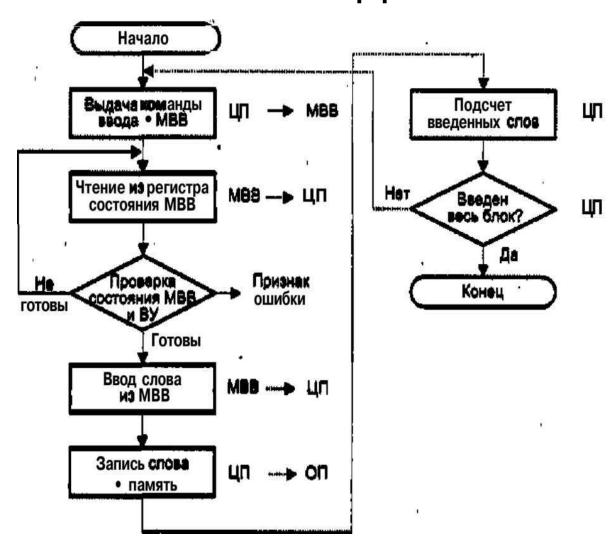
- Флэш-память особый вид энергонезависимой, перезаписываемой полупроводниковой памяти. Одним из преимуществ флэш-памяти является отсутствие движущихся механических частей, что значительно повышает ее надежность. Потребление энергии флэш-памяти примерно в 10-20 раз меньше, чем у других носителей информации с движущимися механическими частями.
- Недостатки флэш-памяти: работает медленнее чем ОЗУ; имеет ограничение по количеству циклов перезаписи (от 10 000 до 1 000 000 для разных типов).

Система ввода-вывода

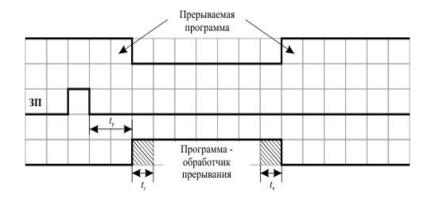

Адресное пространство вводавывода

- Достоинства совмещенного адресного пространства:
 - расширение набора команд для обращения к внешним устройствам;
 - значительное увеличение количества подключаемых внешних устройств;
 - возможность внепроцессорного обмена данными между внешними устройствами, если в системе команд есть команды пересылки между ячейками памяти;
 - возможность обмена информацией не только с аккумулятором, но и с любым регистром центрального процессора.
- Недостатки совмещенного адресного пространства:
 - сокращение области адресного пространства памяти;
 - усложнение декодирующих схем адресов в СВВ;
 - трудности распознавания операций передачи информации при вводе/выводе среди других операций;
 - трудности при построении СВВ на простых модулях ввода/вывода.
- Достоинства выделенного адресного пространства:
 - адрес внешнего устройства в команде ввода/вывода может быть коротким.
 - программы становятся более наглядными, так как операции ввода/вывода выполняются с помощью специальных команд;
 - разработка СВВ может проводиться отдельно от разработки памяти.
- Недостатки выделенного адресного пространства:
 - ввод/вывод производится только через аккумулятор центрального процессора;
 - перед обработкой содержимого ВУ это содержимое нужно переслать в ЦП.


Структура внешнего


- Функции модуля ввода-вывода:
 - локализация данных;
 - управление и синхронизация;
 - обмен информацией;
 - буферизация данных;
 - обнаружение ошибок.

Структура модуля ввода-

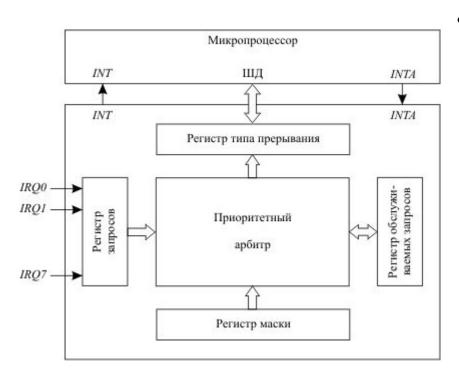


Программно-управляемый вводвывод

Ввод-вывод по прерываниям

- Прерывание это прекращение выполнения текущей команды или текущей последовательности команд для обработки некоторого события специальной программой обработчиком прерывания, с последующим возвратом к выполнению прерванной программы.
- **Время реакции** это время между появлением сигнала запроса прерывания и началом выполнения прерывающей программы в том случае, если данное прерывание разрешено к обслуживанию.
- Глубина прерывания максимальное число программ, которые могут прерывать друг друга. Глубина прерывания обычно совпадает с числом уровней приоритетов, распознаваемых системой прерываний.

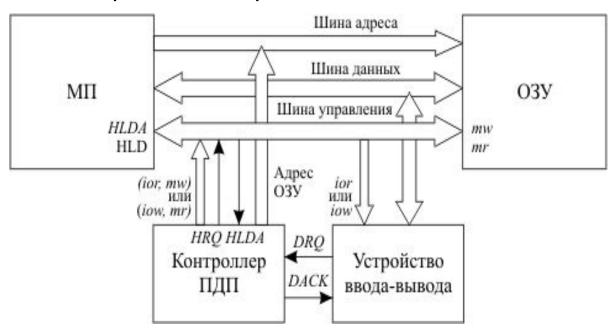
Ввод-вывод по прерываниям

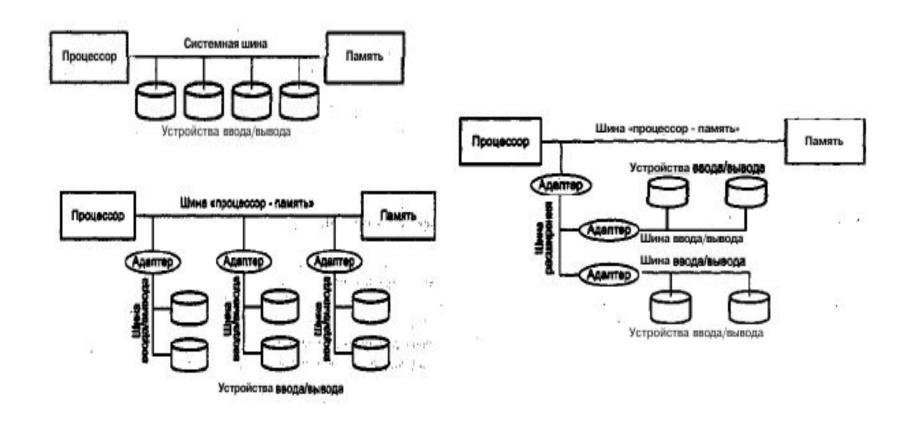


- определение наиболее приоритетного незамаскированного запроса на прерывание;
- определение типа выбранного запроса;
- сохранение текущего состояния счетчика команд и регистра флагов;
- определение адреса обработчика прерывания по типу прерывания и передача управления первой команде этого обработчика;
- выполнение программы обработчика прерывания;
- восстановление сохраненных значений счетчика команд и регистра флагов прерванной программы;
- продолжение выполнения прерванной программы.

Ввод-вывод по прерываниям

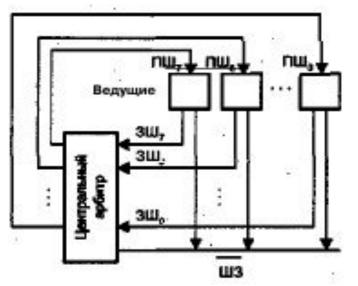
- Аппаратные прерывания используются для организации взаимодействия с внешними устройствами. Запросы аппаратных прерываний поступают на специальные входы микропроцессора. Они бывают:
 - маскируемые, которые могут быть замаскированы программными средствами компьютера;
 - немаскируемые, запрос от которых таким образом замаскирован быть не может.
- Программные прерывания вызываются следующими ситуациями:
 - особый случай, возникший при выполнении команды и препятствующий нормальному продолжению программы;
 - наличие в программе специальной команды прерывания INT n, используемой программистом при обращениях к специальным функциям операционной системы для ввода-вывода информации.

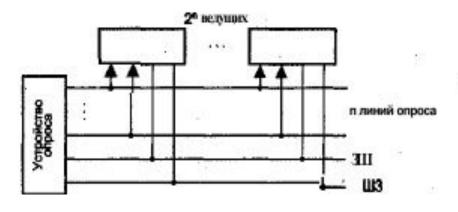

Контроллер приоритетных прерываний

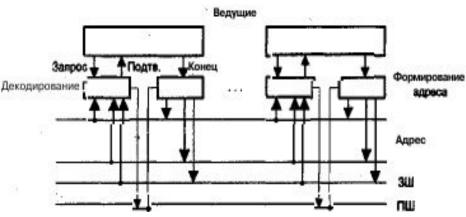

- Функции контроллера прерываний:
 - восприятие и фиксация запросов прерываний от внешних устройств;
 - определение незамаскированных запросов среди поступивших запросов;
 - проведение арбитража;
 - сравнение приоритета
 выделенного запроса с
 приоритетом запроса, который в
 данный момент может
 обрабатываться в
 микропроцессоре, формирование
 сигнала запроса на вход INT
 микропроцессора в случае, если
 приоритет нового запроса выше;
 - передача в микропроцессор по шине данных типа прерывания, выбранного в процессе арбитража.

Прямой доступ к памяти

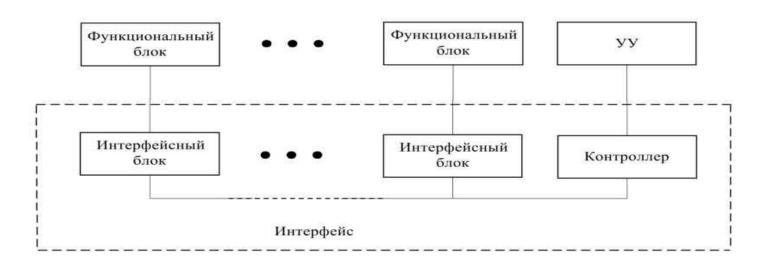
- Функции контроллера ПДП:
 - 1) Управление инициируемой процессором или ПУ передачей данных между ПУ и ОП;
 - 2) Задание размеров блока данных, который подлежит передаче, и области памяти, используемой при передачи;
 - 3) Формирование адресов ячеек ОП, участвующих при передаче;
 - 4) Подсчет числа единиц переданных данных и определение момента завершения операции ввода-вывода.


Шинная организация


Арбитраж шин

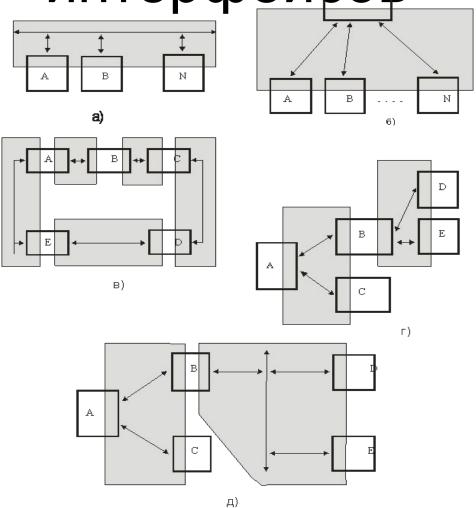

- Статические приоритеты
- Динамические приоритеты:
 - простая циклическая смена приоритетов;
 - циклическая смена приоритетов с учетом последнего запроса;
 - смена приоритетов по случайному закону;
 - схема равных приоритетов;
 - алгоритм наиболее давнего использования.

Механизмы арбитража

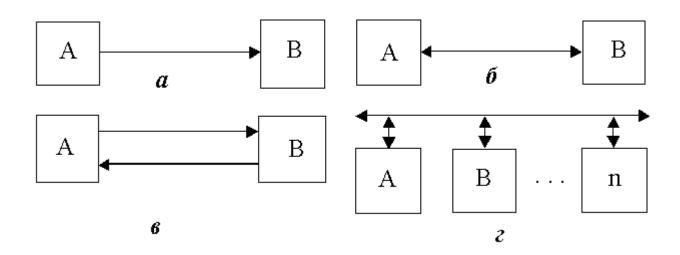


Организация интерфейсов ЭВМ

• Интерфейс - совокупность унифицированных аппаратных, программных и конструктивных средств, необходимых для реализации взаимодействия различных функциональных элементов в автоматических системах сбора и обработки ин формации при условиях, предписанных стандартом и направленных на обеспечение информационной, электрической и конструктивной совместимости указанных элементов


Функции и характеристики интерфейсов

- Функции интерфейсов:
 - селекция (выбор) информационного канала,
 - синхронизация обмена информацией,
 - координация взаимодействия,
 - буферное хранение информации,
 - преобразование формы представления информации.
- Основные характеристики интерфейсов:
 - функциональное назначение;
 - производительность (битовая или байтовая скорость);
 - топология связей;
 - принцип обмена информацией;
 - режим обмена информацией;
 - максимальное число объединяемых интерфейсом абонентов;
 - число линий, используемых в интерфейсе;
 - число адресуемых абонентов;
 - максимальная протяженность физической среды интерфейса.


Классификация интерфейсов

Организация связей интерфейсов

Режимы обмена информацией интерфейсов

