Часть II Обзор структурных уровней

Иерархический ряд физических структур

••• ⇔ нуклон ⇔ ядро ⇔ атом ⇔ молекула ⇔ НМС ⇔ •••

Элементарные частицы

Классический структурализм

Основой для принятия данной структурной модели является экспериментальная возможность проведения двух взаимно обратных процессов:

$$H - O - H \xrightarrow{+\Delta E} H + H + O$$

Существуют объекты, в отношении которых классический структурализм оказывается неадекватным (и бесполезным)

$$p^+ + p^+ \xrightarrow{+\Delta E} 4p^+ + 2e + 2\Box v + \gamma$$

Элементарные частицы

Глобальное описание

Наблюдаемые ЭЧ

Масса покоя, *m*_о

Лептоны	1	Электрон, нейтрино
Мезоны	~ 200	Мюон (µ-мезон)
Барионы	~ 2000	протон, нейтрон

Электрический заряд, Q

Положительно	+1	протон
заряженные		
Нейтральные	0	нейтрон
Отрицательно	,	STOKTOON MIGON
заряженные	-1	

Спин (S) и магнитный момент ($\mu = \gamma \cdot S$)

Фермионы	s = 1/2, 3/2,	e ⁻ , v ^o , n ^o , p ⁺
Бозоны	s = 0, 1, 2,	γ

Мультиплеты

Кварк-лептонная модель

Взаимодействия

ЭЛЕКТРОМАГНИТНЫЕ ЦВЕТОВЫЕ

кварк ↔ кварк

кварк ↔ лептон

лептон ↔ лептон

Кварковые структуры

протон

нейтрон

Электромагнитные взаимодействия

Цветовые взаимодействия

Законы сохранения

- 1) Электрического заряда: $\sum \mathbf{Q}_i = \text{const}$
- Лептонного заряда: ∑ L_i = const (суммарное число частиц-лептонов в изолированной системе не может изменяться)
- Барионного заряда: ∑ В_i = const (суммарное число частиц-барионов в изолированной системе не может изменяться)

Античастицы

 $-\Delta E = 2mc^2$

Античастицы

 $+\Delta E = 2mc^2$

«Море Дирака»

$$\mathbf{Q} = \mathbf{0} \quad \mathbf{B} = \mathbf{0} \quad \mathbf{L} = \mathbf{0}$$

Q = -1 B = -1 L = 0

Атомные ядра

На больших расстояниях диполи не чувствуют друг друга, так как силы притяжения компенсируются силами отталкивания

На малых расстояниях диполи чувствуют друг друга, так как силы притяжения и отталкивания имеют существенно разные величины

> Остаточное взаимодействие

Нуклоны

Остаточные цветовые взаимодействия или «ядерные силы»

(заметны только на малых расстояниях порядка 10⁻¹⁵ м)

Нет взаимодействия

Отдельные нуклоны

Есть взаимодействие

Атомное ядро

Внутриядерные взаимодействия

Два типа взаимодействий между нуклонами:

- фундаментальное электромагнитное, обусловленное электрическими зарядами протонов, а также собственными магнитными моментами протонов и нейтронов;
- остаточное цветовое («ядерные силы»), обусловленное цветовыми зарядами кварков, содержащихся внутри расположенных рядом нуклонов.

Кулоновские силы являются силами отталкивания, причем кулоновская энергия отталкивания быстро возрастает с увеличением заряда ядра

Ядерные силы являются силами притяжения и отличаются насыщаемостью

Зависимость удельной энергии связи от массового числа

Область «метастабильности»

Проблема соотношения чисел протонов и нейтронов

Для каждого числа нуклонов $N = N_p + N_n$ существует некоторое ОПТИМАЛЬНОЕ соотношение N_p / N_n , нарушение которого приводит к распаду ядра.

Фактор 1 — кулоновские силы отталкивания между протонами

Область стабильных ядер

$$V_{p} = \frac{(N_{p} + N_{n})}{[1,98 + 0.015(N_{p} + N_{n})^{2/3}]}$$

Ядро	М	Z (расч.)	Z (реал.)
He	4	1,98	2
С	12	5,83	6
Na	23	10,95	11
CI	35	16,35	17
Au	197	79,18	79
Pb	207	82,64	82
U	238	93,11	92

При значительном нарушении протонно-нейтронного баланса ядро становтсся **РАДИОАКТИВНЫМ** и подвергается определенному виду распада.

Ядро ¹⁴ С	Реально 6 p + 8 n	Оптимально 7 p + 7 n		
${f n} o {f p^+} + {f e^-} + {f \widetilde{v}_e} {f 1^4 C} \longrightarrow {f 1^4 N}$ Электронный распад (7 000 распадов/с в человеческом теле)				
Ядро ¹² N	Реально 7 p + 5 n	Оптимально 6 p + 6 n		
р⁺ → n Позитроннь	+ е⁺ + V_е ый распад	$^{12}N \longrightarrow ^{12}C$		

Ядерная химия

Нестабильные ядра самопроизвольно превращаются в более стабильные

α-распад

Причина: чрезмерно большой заряд ядра, что приводит к выбросу α-частиц (ядер ⁴Не)

$\sum_{z=1}^{M} A = \frac{(M-4)}{(Z-2)} B + \frac{4}{2} H e + \Delta E (4-7 M)$

(1 МЭВ, в расчете на 1 моль актов распада, соответствует 1,3 · 10¹² Дж)

1 кг радия — 10¹⁴ Дж, 1 кг нефти — 10⁷ Дж.

Причина: нарушение протонно-нейтронного баланса

 $n \rightarrow p^{+} + e^{-} + \tilde{v}_{e}$ Электронный (или β^{-}) распад

$${}^{M}_{z} A = {}^{M}_{(z+1)} B + e^{-} + \Delta E (9,8 \text{ M} 3B)$$
$${}^{M}_{z} A = {}^{M}_{(z-1)} B + e^{+} + \Delta E (9,8 \text{ M} 3B)$$

Скорость распада

Электронный распад (^{β-} -распад)

Примеры:

(12 минут) $n \rightarrow p + e^- + V_{\rho}$ (12 лет) $^{3}H_{1} \rightarrow ^{3}He_{2} + e^{-} + \tilde{v}_{e}$ (1,4·10⁹лет) ${}^{40}K_{19} \rightarrow {}^{40}Ca_{20} + e^- + \tilde{v}_e$ (23 мин) $^{239}U_{qq} \rightarrow ^{239}Np_{qq} + e^- + v_e$ (2,3 дня) $^{239}Np_{93} \rightarrow ^{239}Pu_{94} + e^{-} + v_{e}$ (22 мин) $^{233}Th_{90} \rightarrow ^{233}Pa_{91} + e^{-} + v_{e}$ (27 дней) $^{233}Pa_{01} \rightarrow ^{233}U_{92} + e^- + v_e$

Позитронный распад (β⁺ -распад)

Примеры:

$$\label{eq:constraint} \begin{split} {}^{11}C_6 &\to {}^{11}B_5 + e^+ + v_e & \text{(20 минут)} \\ {}^{14}\mathrm{O}_8 &\to {}^{14}N_7 + e^+ + v_e & \text{(72 c)} \\ {}^{108}Ag_{47} &\to {}^{108}Pd_{46} + e^+ + v_e & \text{(140 c)} \end{split}$$

Электронный захват (е-захват, К-захват)

Примеры

К-захват: проникновение электрона с К-оболочки в ядро

<u>Причина</u>: потеря устойчивости большого ядра при его возмущении внешними силами

$${}^{(M_1 + M_2 + k)}_{(Z_1 + Z_2)} \mathbf{A} + \mathbf{n} = {}^{M_1}_{Z_1} \mathbf{B} + {}^{M_2}_{Z_2} \mathbf{C} + + (k + 1)\mathbf{n} + \Delta E$$

$${}^{235}_{92}\mathbf{U} + \mathbf{n} = \left\{{}^{236}_{92}\mathbf{U}\right\} = {}^{144}_{56}\mathbf{Ba} + {}^{89}_{36}\mathbf{Kr} + + 3\mathbf{n} + 208 \text{ M}36\right\}$$

Атомная бомба

Атомный реактор

Критическая масса (объем)

Пространственная форма

Реакция синтеза

Причина: выигрыш в энергии за счет появления новых ядерных сил типа **n-n**, **n-p** и **p-p**

Реакции синтеза протекают при высокой температуре (*T* > 10⁹ K), так как для сближения взаимодействующих ядер необходимо преодолеть большие силы кулоновского отталкивания

Цикл Бете (горение звезд)

¹H + ¹²C
$$\rightarrow$$
 ¹³N + γ
¹³N \rightarrow ¹³C + e^+ + v

- ^{1}H + ^{13}C \rightarrow ^{14}N + γ
- $^{1}H + ^{14}N \rightarrow ^{15}O + \gamma$ $^{15}O \rightarrow ^{15}N + e^+ + v$

 $4^{1}H = {}^{4}He + 2e^{+} + 2v + 3\gamma + 25,7 M_{9}B$

Реакции типа «мишень-снаряд»

$^{165}Eu + {}^{32}S \rightarrow {}^{196}Au + n$

Научные исследования в области ядерной химии

Синтез трансурановых элементов

Ядерная спектроскопия

Мессбауэровская спектроскопия

Магнитная СТ структура ядерных уровней ⁵⁷Fe и характерный вид мёссбауэровского спектра. Стрелками показаны разрешенные гамма-переходы.

где *а* — экваториальный радиус,

b — полярный радиус.

ЯКР-спектроскопия