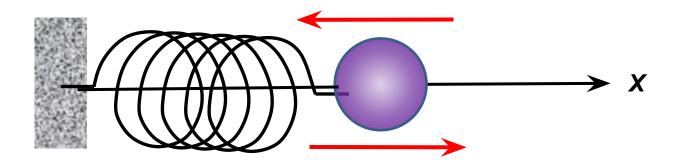
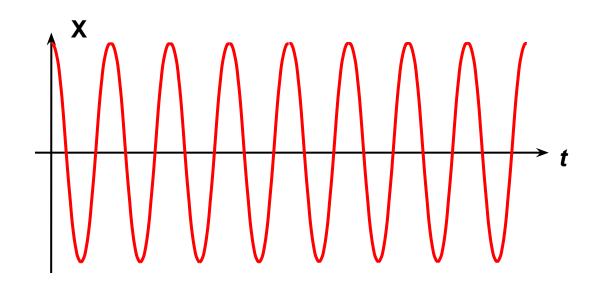
Одномерный осциллятор

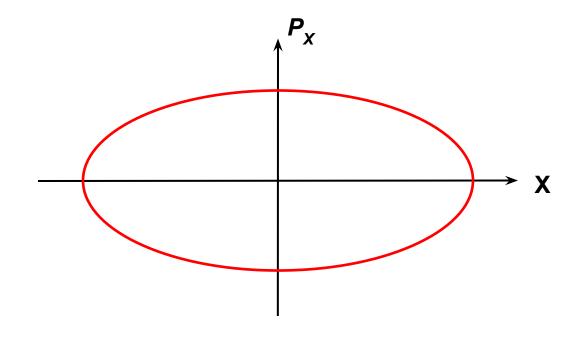


Колебательное движение (под действием внешней силы)



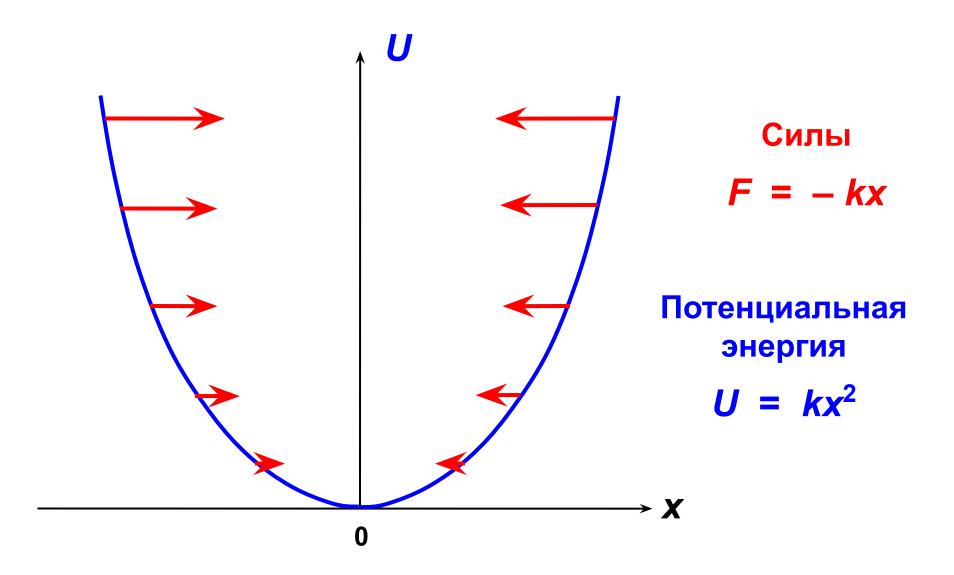


Траектория в галилеевом пространстве



Траектория в фазовом пространстве

Энергетическое представление



Квантовомеханическое описание

Задача: найти все стационарные состояния осциллятора; для каждого состояния установить вид волновой функции и допустимые значения наблюдаемых

$$\Phi(x, t) = ???$$
 $E = ???$

$$\Phi(\mathbf{x}, t) = D_1 \Psi_1 + D_2 \Psi_2 + \ldots + D_r \Psi_r$$

Стационарные волновые функции (собственные функции оператора Гамильтона)

$$\psi(x, t) = \psi(x) \cdot e^{i\frac{E}{\Box}t} = \psi(\phi) \cdot e^{i\phi t}$$

$$H \Psi = H = T + U$$

$$E\Psi$$

$$-\frac{\Box^{2}}{2m} \cdot \frac{d^{2}\Psi(x)}{dx^{2}} + \frac{m\omega^{2}x^{2}}{2} \cdot \Psi(x) = E \cdot \Psi(x)$$

$$\frac{d^2 \mathbf{\psi}(x)}{dx^2} + \frac{2m}{2} \left[E - \frac{m\omega^2 x^2}{2} \right] \mathbf{\psi}(x) = \mathbf{0}$$

- а) переменную x заменим на $\xi = (\alpha)^{1/2} \cdot x$, где $\alpha = m\omega/\Box$ при этом функция $\Psi(x)$ переходит в функцию $\Psi(\xi)$,
- б) вместо энергии E возьмем другую меру энергии

$$\lambda = (2m/\square^2) \cdot E$$

$$\Psi(\mathbf{x}) \quad \Longrightarrow \quad \Psi(\xi) = e^{\frac{-\xi^2}{2}} \cdot H(\xi)$$

$$\frac{d^2 H(\xi)}{d \xi^2} - 2 \xi \frac{d H(\xi)}{d \xi} + \left[\frac{\lambda}{\alpha} - 1\right] H(\xi) = 0$$

Уравнение Эрмита

 $H(\xi)$ — функции (полиномы) Эрмита

условие разрешимости
$$\frac{\lambda}{\alpha} - 1 = 2v$$
, где $v = 0, 1, 2, ...$

Колебательное квантовое число

$$\mathbf{H}_{\mathbf{v}}(\boldsymbol{\xi}) = (-1)^{\mathbf{v}} \cdot \exp(\boldsymbol{\xi}^2) \cdot d^{\mathbf{v}}[\exp(-\boldsymbol{\xi}^2)]/d\boldsymbol{\xi}^{\mathbf{v}}$$

$$H_0 = 1$$
; $H_1 = 2\xi$; $H_2 = 4\xi^2 - 2$; $H_3 = 8\xi^3 - 12\xi$

$$H_{v+1} = 2\xi \cdot H_v - 2v \cdot H_{v-1}$$

$${}^{1}H_{4} = 2\xi \cdot H_{3} - 2v \cdot H_{2}$$

$$H_{2}$$

$$H_{4} = 2\xi \cdot (8\xi^{3} - 12\xi) - 6(4\xi^{2} - 2) = 16\xi^{4} - 24\xi^{2} - 24\xi^{2} + 12 = 16\xi^{4} - 48\xi^{2} + 12$$

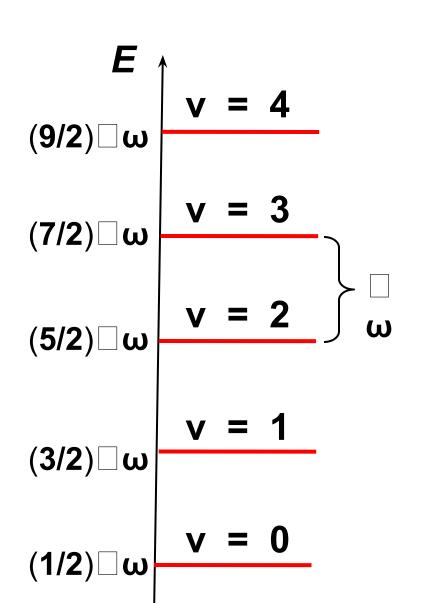
Энергия

$$\frac{\lambda}{\alpha}$$
 - 1 = 2v

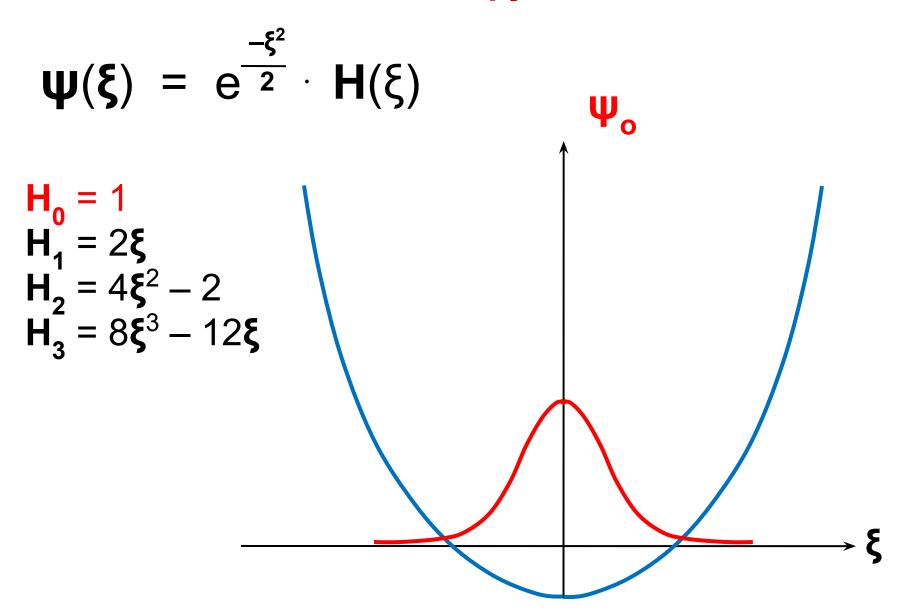
$$\left[\frac{2mE}{\Box^2}\right]\left(\frac{\Box}{m\omega}\right] - 1 = 2v$$

$$\frac{2E}{\square \omega} - 1 = 2v$$

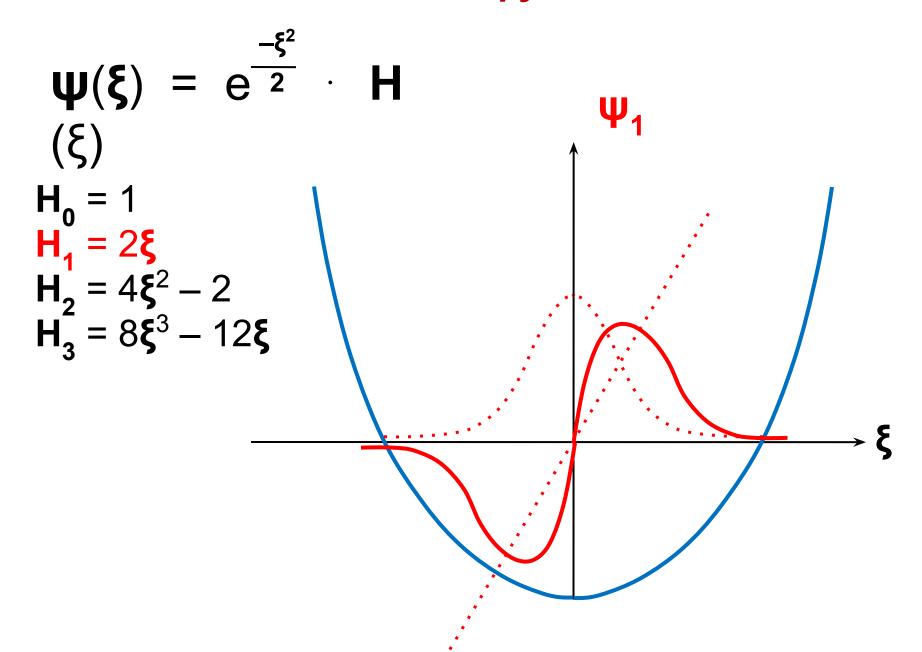
$$E = \square \omega(v + 1/2)$$



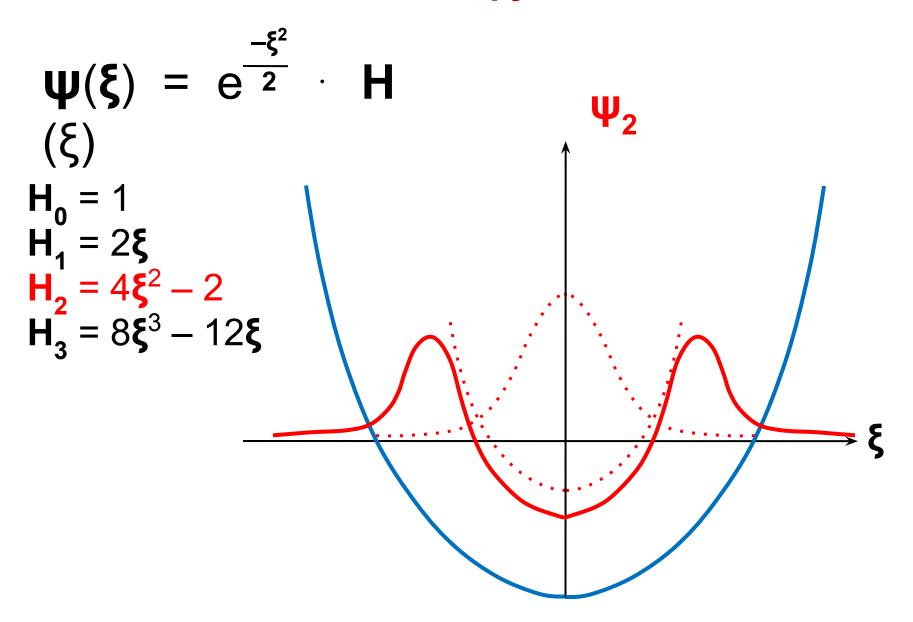
Волновые функции

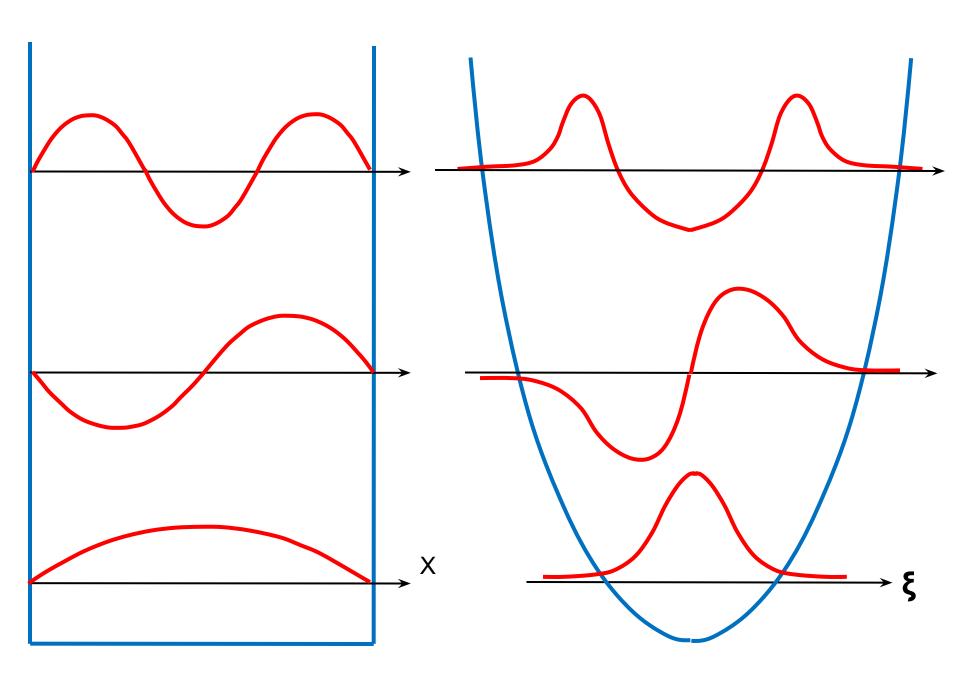


Волновые функции



Волновые функции





Влияние параметров

$$\omega = \sqrt{\frac{k}{m}}$$

. E	
v = 4	v = 7
2	v = 6
v = 3	v = 5
v = 2	v = 4
	v = 3
v = 1	v = 2
	v = 1
v = 0	v = 0

E	
v = 4	$\mathbf{v} = 7$
2	v = 6
v = 3	v = 5
v = 2	v = 4
	v = 3
v = 1	v = 2
	v = 1
v = 0	v = 0

 $N \equiv N$

CI-CI

F-F

Br—Br

Многомерный осциллятор

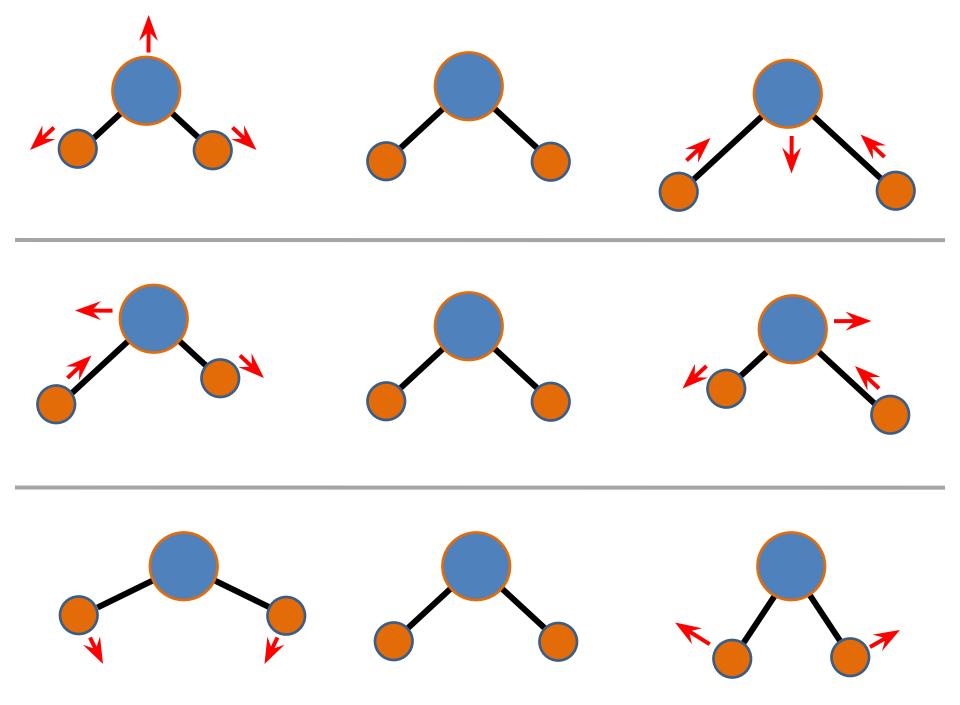
$$Q = C_1 \cdot q_1 + C_2 \cdot q_2 + \dots + C_r \cdot q_r$$
Нормальные колебания

- r = 3N 6
 - или
- r = 3N 5 (линейные молекулы)

- 1. Всякое НК является ГЛОБАЛЬНЫМ (участвуют все атомы молекулы).
- 2. Всякое НК является СИНХРОННЫМ (все атомы движутся согласованно, с одной и той же частотой и фазой).

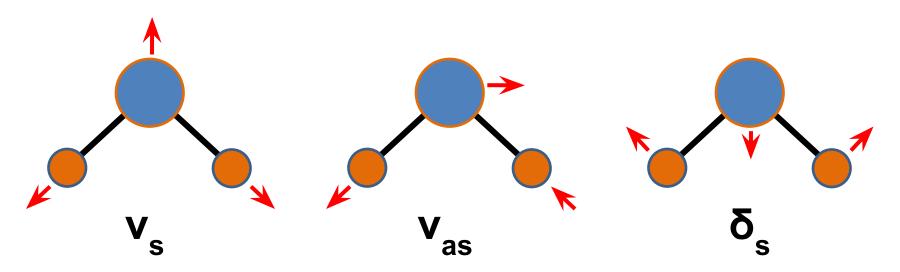
Валентное НК (V) (изменяются длины связей)

Деформационное НК (**ठ**) (изменяются валентные углы)



Симметрия НК

HK ⊂ HП TГC



C _{2v}	Е	C ₂ ^Z	σ^{XZ}	σ^{YZ}	Типы движений	Типы колебаний
A_1	1	1	1	1	t _z	v_s δ_s
A ₂	1	1	–1	_1	R_z	
B ₁	1	–1	1	_1	t _x , R _y	
B ₂	1	_1	_1	1	t _y , R _x	Vas

Каждое НК описывается моделью одномерного осциллятора

$$\Psi(\xi_{1}) = e^{\frac{-\xi_{1}^{2}}{2}} \cdot H_{v1}(\xi_{1}) \qquad E_{1} = \square \omega_{1}(v_{1} + 1/2)$$

$$\Psi(\xi_{2}) = e^{\frac{-\xi_{2}^{2}}{2}} \cdot H_{v2}(\xi_{2}) \qquad E_{2} = \square \omega_{2}(v_{2} + 1/2)$$

$$\Psi(\xi_{r}) = e^{\frac{-\xi_{r}^{2}}{2}} \cdot H_{vr}(\xi_{r}) \qquad E_{r} = \square \omega_{r}(v_{r} + 1/2)$$

Состояние =
$$(v_1, v_2, ..., v_r)$$

Домашнее задание

Задача 4.5. Для указанной молекулы найти число НК

Задача 4.6. Трехатомная нелинейная молекула характеризуется тремя НК с собственными частотами:

$$\omega_1 = 3.10^{14}$$
 $\omega_2 = 4.10^{14}$ $\omega_3 = 5.10^{14}$

Вычислить частоту и длину волны электромагнитного излучения, вызывающего квантовый переход между двумя стационарными состояниями:

$$(v_1, v_2, v_3)_1 \longrightarrow (v_1, v_2, v_3)_2$$

Ангармонический осциллятор

Диссоциационный предел

