Атом водорода

Описание атома водорода играет в квантовой химии фундаментальную роль

- атом водорода это единственная реальная система, для которой возможно установить аналитический вид волновых функций
- 2) волновые функции стационарных состояний атома водорода образуют базисный набор, который можно использовать для анализа волновых функций более сложных систем — многоэлектронных атомов и молекул

Водородоподобные атомы (ядро + 1 электрон) He⁺ Li²⁺ Be³⁺

Задача: найти все стационарные состояния и описать их векторами состояния (волновыми функциями):

 $|\Psi_1\rangle |\Psi_2\rangle \dots$

Разложение вектора по базису:

$$|\Psi\rangle = C_1 |1\rangle + C_2 |2\rangle + ...$$

Векторы стационарных состояний

$$|k\rangle = |x_1, y_1, z_1, x_2, y_2, z_2\rangle_k$$

exp(i $\omega_k t$),

где $\omega_k = E_k / \Box$

Вектор состояния

для оператора Гамильтона

Оператор Гамильтона для атома водорода

$$H = T_{1} + T_{2} + U_{12},$$

$$T_{1} = -(\Box^{2}/2m_{1})\nabla^{2}_{(x1, y1, z1)}$$
$$T_{2} = -(\Box^{2}/2m_{2})\nabla^{2}_{(x2, y2, z2)}$$
$$U_{12} = -(Ze^{2})/r$$

$$\nabla^2 = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

«набла в оператор
квадрате» Лапласа

Уравнение на собственные значения для оператора Гамильтона в лабораторной декартовой системе координат

$$\left[\frac{-\frac{1}{2}}{E\Phi^{2}m_{1}} \nabla^{2}_{(1)} - \frac{-\frac{1}{2}}{2m_{2}} \nabla^{2}_{(2)} - \frac{Ze^{2}}{r}\right] \Phi =$$

Переход к другой системе координат

координаты центра масс в лабораторной системе

координаты электрона во внутренней системе, центрированной на ядре Разделение одного сложного (6-мерного) движения на два простых (3-мерных) движения

- 1) ГЛОБАЛЬНОЕ движение атома как материальной точки (центра масс) в лабораторной системе координат (X, Y, Z).
- 2) ЛОКАЛЬНЫЕ движения частиц во внутренней системе координат (x, y, z), начало которой расположено в центре масс.

$$\Phi(x_1, y_1, z_1, x_2, y_2, z_2) =$$

 $= \Phi'(X, Y, Z) \bullet \Phi''(x, y, z)$

Внешнее уравнение

$$-\frac{\Box^2}{2M} \nabla^2_{X, Y, Z} \Phi' = E\Phi'$$

Частица с массой

$$M = m_1 + m_2^2^2^2$$

в трехмерном
потенциальном ящике

$$E = E_{\chi} + E_{\gamma} + E_{z} = \frac{\pi^{2} \Box}{2} \left[\frac{n_{\chi}^{2}}{L_{\chi}^{2}} + \frac{n_{\gamma}^{2}}{L_{\gamma}^{2}} + \frac{n_{z}^{2}}{L_{z}^{2}} \right]$$

$$\frac{2m}{\Phi'(X, Y, Z)} = \psi(X) \cdot \psi(Y) \cdot \psi(Z) =$$

$$= \sqrt{\frac{8}{V}} \sin\left[\frac{\pi n}{\frac{X}{L_{\chi}}} \cdot x\right] \cdot \sin\left[\frac{\pi n}{\frac{Y}{L_{\chi}}} \cdot y\right] \cdot \left[\frac{\pi n}{\frac{X}{L_{\chi}}} \cdot y\right] \cdot$$

Внутреннее уравнение

$$\left[-\frac{\square^2}{2\mu}\nabla_{x,y,z}^2 - \frac{Ze^2}{r}\right]\Phi = E\Phi \qquad \mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$$

«приведенная»
масса

Переход к сферической системе координат

Условие разрешимости системы

- $\alpha = 0, 1, 4, 9, 16, 25, 36, \dots$
- $\beta = 0, 2, 6, 12, 20, 30, 42, \dots$

Вспомогательные соотношения

 $\alpha = m \cdot m$, где $m = 0, \pm 1, \pm 2, ...$

Ф-функции

$$\Phi_{m} = \frac{1}{\sqrt{2}} e^{im\Phi} \{m = 0, \pm 1, \pm 2, \dots\}$$
$$\pi$$

стац	набор { □ ≥ <i>m</i> состояний } { <i>n</i> > □	
<i>n</i> = 1	□ = 0	m = 0
<i>n</i> = 2	□ = 0	m = 0
	□ = 1	<i>m</i> = -1 0 +1
<i>n</i> = 3	□ = 0	m = 0
	□ = 1	<i>m</i> = -1 0 +1
	□ = 2	<i>m</i> = -2 -1 0 +1 +2

Ψ₁₀₀

 $\Psi_{_{200}}$ Ψ_{21-1} Ψ_{210} Ψ_{21+1} $\Psi_{_{300}}$ Ψ_{31-1} Ψ_{310} Ψ_{31+1} Ψ_{32-2} Ψ_{32-1} Ψ_{320} Ψ_{32+1} Ψ_{32+2}

Суперпозиционные состояния

 $\Psi_{n\Box} = C_{-m} \cdot \Psi_{n\Box,-m} + \dots + C_{+m} \cdot \Psi_{n\Box,+m}$ Квантовые числа *n* и \Box определяют пространство состояний { $\Psi_{n\Box}$ } с размерностью 2 \Box + 1

Все состояния в таком пространстве характеризуются одним и тем же значением энергии и момента импульса:

E = const |L| = const

При этом, однако ориентация вектора момента может быть любой:

В пустом пространстве все направления равноправны

Переход к другому базису

$$(\Psi_{n \mid |m|})^{+} = \Psi_{n \mid , +m} + \Psi_{n \mid , -m} = \mathbf{R} \cdot \Theta \cdot \cos m \phi (\Psi_{n \mid |m|})^{-} = \Psi_{n \mid , +m} - \Psi_{n \mid , -m} = \mathbf{R} \cdot \Theta \cdot \sin m \phi$$

 $2p_z = R \cdot \cos \theta$

Нестационарные суперпозиционные состояния

Различные значения орбитального квантового числа (□ ≠ const)

$$\Psi_n = C_1(2\mathbf{s}) + C_2(2\mathbf{p}_{+1})$$

Различные значения главного квантового числа (*n* ≠ const)

$$\Psi = C_1(1s) + C_2(2p_{+1})$$

Нестационарные состояния быстро релаксируют к одному из стационарных (**T** ≈ 10⁻⁸ с)

Физические характеристики атома водорода

ПРОСТРАНСТВЕННЫЕ

выражаются функциями распределения

F(*x*, *y*, *z*)

или

F(*r*, θ, φ)

ДИНАМИЧЕСКИЕ

имеют точно определенные числовые значения

 $\mathbf{A} = \mathbf{A}$

 $\mathbf{B} = B$

....

Динамические наблюдаемые

A Ψ(r, θ, φ) = **A** · Ψ(r, θ, φ)

Волновые функции стационарных состояний являются собственными для операторов динамических наблюдаемых

$$H \Psi = E \cdot \Psi$$
 (E — энергия)

- $L^2 \Psi = |L|^2 \cdot \Psi$ (|L| модуль вектора
 - орбитального момента)
- $L_{z} \Psi = L_{z} \cdot \Psi$ (L_{z} проекция вектора орбитального момента)

Нуль на шкале энергии соответствует бесконечно большому расстоянию между ядром и электроном, поэтому энергии всех связанных состояний отрицательны

E = T + U	
R — ридберг (единица энергии)	µ = 9,11 · 10 ^{−31} кг о = 1.6 · 10 ^{−19} Кп
R = 136 pr =	□ = 1,055 · 10 ⁻³⁴ Дж·с
= 2,18 · 10 ⁻¹⁸ Дж	ε _o = 8,84 · 10 ^{−12} Ф/м

Энергия
(полная)
$$E_n = -\frac{\mu Z^2 e^4}{32 \pi^2 \epsilon_o^2 \Box^2 n^2} = -\frac{R}{n^2}$$

Энергетическая диаграмма

Электронные переходы в атоме водорода

Вырожденность уровней энергии

Модуль и проекция вектора L $|\mathbf{L}| = \Box \sqrt{\Box (\Box + 1)} = 0, \sqrt{\Box} 2, \sqrt{\Box} 6 \sqrt{\Box} 12,$ $L_{L} = \Box m = 0, \pm \Box, \pm 2\Box, \ldots, \pm |L|$ 2 **0 1 6** 0 Lz +2 0 0 0 . -2

Пространственные наблюдаемые

Ψ(*r*, θ, φ) — не является собственной для операторов координат **R**, Θ и Φ

$$\Psi(r, \theta, \varphi) = C_1 \begin{vmatrix} r_1 \\ \theta_1 \\ \varphi_1 \end{vmatrix} + C_2 \begin{vmatrix} r_2 \\ \theta_2 \\ \varphi_2 \end{vmatrix} + \dots$$

$$|C_1|^2 = P(r_1, \theta_1, \phi_1)$$

 $|C_2|^2 = P(r_2, \theta_2, \phi_2)$

Вероятностная функция распределения

«электронное облако»

Вероятностная функция распределения

«электронное облако»

 $R_{30} = e^{-\rho/3} \cdot (27 - 18\rho + 2\rho^2)$ **3s** – состояние | **R** |² R Узловые точки ÷ ╺┨╸ r r

Случай больших п

Число узловых точек = n-1

Узловая структура (и энергия) электронных облаков не зависят от величины магнитного числа *m*. Так, например, для всех пяти состояний типа 3*d* число радиальных узлов равно нулю. Функция радиального распределения (ФРР)

$$\boldsymbol{\Phi} \mathbf{P} \mathbf{P}(\mathbf{r}) = |\mathbf{R}(\mathbf{r})|^2 \cdot 4 \boldsymbol{\pi} \mathbf{r}^2$$

Она дает вероятность обнаружить электрон на расстоянии *г* от ядра, независимо от углов, т.е. внутри тонкого шарового слоя, объем которого пропорционален **4П***г*²

Угловые зависимости

Шаровые функции

$\mathbf{Y}(\mathbf{\Theta}, \mathbf{\phi}) = \mathbf{\Theta}(\mathbf{\Theta}) \cdot \mathbf{\Phi}(\mathbf{\phi})$ (при $\mathbf{R}(r) = \text{const}$)

Область определения (поверхность сферы)

Полярная диаграмма

 $2p_z = R \cdot \cos \theta$

Полярная диаграмма

$2p_y = R \cdot \sin \theta \cdot \sin \phi$

$2p_z = R \cdot \cos \theta$

По мере роста квантового числа 🗌 общее число узловых поверхностей не изменяется, но часть радиальных преобразуется в угловые

Изовероятные поверхности (ИВП)

$$|\Psi(r, \theta, \phi)|^2 = \text{const}$$

 $r = f(\theta, \phi)$

Для того, чтобы получить представление о распределении плотности электронного облака, необходимо располагать большим набором ИВП с разными значениями вероятности

Спиновые характеристики электрона Орбитальный момент Спиновой момент

Модуль $|S|^2 = \Box^2 [s(s+1)]$

S — *спиновое* квантовое число

Проекция $S_z = \Box \cdot m_s$

 $m_{\rm s}$ — магнитное спиновое квантовое число

Квантовые числа

Спин-орбитальное взаимодействие

Закон сохранения момента импульса

Закон сохранения момента выполняется для обоих векторов (L₁ и L₂) по отдельности Закон сохранения момента выполняется только для глобального вектора J = L₁ + L₂

Атом водорода

Магнитные моменты взаимодействуют между собой —

спин-орбитальное взаимодействие

J — модуль вектора полного механического момента **J**_Z — проекция вектора полного механического момента

Вектор полного механического момента

ns $\Box = 0$ *s* = 1/2

$$j = 1/2$$

 $m_j = \{-1/2 + 1/2\}$

nd = 2 = s = 1/2

 $j_{1} = \Box + s = 5/2$ $m_{j1} = \{ -5/2 - 3/2 - 1/2 + 1/2 + 3/2 + 5/2 \}$ $j_{2} = |\Box - s| = 3/2$ $m_{j2} = \{ -3/2 - 1/2 + 1/2 + 3/2 \}$

Нерелятивистские состояния

 $\{ n, \Box, m_{\Box}, s, m_{s} \\ \{ E, |L|, L_{z}, |S|, S_{z} \}$ $\{ n, \Box, m_{\Box}, m_{s} \} \\ \{ E, |L|, L_{z}, S_{z} \}$

Релятивистские состояния

$\{n, \Box, s, j, m_j\}$	{ n , □, j , m _j
{ <i>E</i> , L , S , J , J _z }	{ [}] <i>E</i> , L , J , J _z }

Нерелятивистская номенклатура

Релятивистская номенклатура

$$m_{\Box} = -1 \qquad 0 \qquad +1$$

$$2p_{-1} \qquad 2p_{0} \qquad 2p_{+1} \qquad m_{s} = +1/2$$

$$2p_{-1} \qquad 2p_{0} \qquad 2p_{+1} \qquad m_{s} = -1/2$$

$$m_{\Box} = -1 \qquad 0 \qquad +1$$

$$m_{\Box} = -2 -1 \quad 0 \quad +1 \quad +2$$

$$3d_{-2} \quad 3d_{-1} \quad 3p_{o} \quad 3d_{+1} \quad 3d_{+2} \quad m_{s} = +1/2$$

$$3d_{-2} \quad 3d_{-1} \quad 3d_{o} \quad 3d_{+1} \quad 3d_{+2} \quad m_{s} = -1/2$$

$$m_{\Box} = -2 \quad -1 \quad 0 \quad +1 \quad +2$$

Домашнее задание

Задача 6.1.

определить число радиальных и угловых узловых поверхностей $N_{\text{радиальн.}}$ = ???, $N_{\text{углов.}}$ = ???

нарисовать примерный вид графиков радиальной и угловой зависимостей волновой функции и ее квадрата.

Задача 6.2.

Для заданного стационарного состояния { *n*, □, *m*_□, *m_s* } атома водорода составить нерелятивистские и релятивистские обозначения

Задача 6.3.

Для заданного стационарного состояния { *n*, □, *m*_□, *m*_s } атома водорода вычислить значения наблюдаемых:

- 2) *модулей* и *проекций* векторов орбитального, спинового и полного механического моментов (в Дж · с)

 $|L| = ??? \qquad L_{z} = ???$ $|S| = ??? \qquad S_{z} = ???$ $|J_{1}| = ??? \qquad J_{1z} = ??? \qquad (2j_{1} + 1 \text{ штука})$ $|J_{2}| = ??? \qquad J_{2z} = ??? \qquad (2j_{2} + 1 \text{ штука})$

$$j_1 = \Box + s$$
 $j_2 = |\Box - s|$