Выгрузка BIOS устройства «Криптон-4»

- аппаратура КРИПТОН-3 –4К/16 обеспечивает генерацию имитоприставки (имитовставки) длиной 4 байта в соответствии с ГОСТ 28147-89;
- выгрузка BIOS устройства *«Криптон-4»* в память компьютера значительно повышает скорость шифрования. Эту операцию можно осуществить одним из двух способов:
 - 1. в *Setup* компьютера установить *Shadow RAM* по адресу *BIOS Криптон* в состояние *Enabled*, *Cached* или *Into-486*;
 - 2. после инициализации устройства запустить программу *стточег.com*, поставляемую в составе базового ПО(можно в *autoexec.bat*).

Инсталляция программ Crypton API для работы устройства КРИПТОН-8/РСІ в среде WINDOWS-95/98/NT4.0/ 2000

- инсталляция программ *Crypton API* для работы устройства *КРИПТОН-8/РСІ* в среде *WINDOWS-95/98/NT4.0/ 2000* выполняется до установки платы в компьютер по следующему алгоритму:
 - 1. открыть на дискете, входящей в комплект поставки, каталог *Crypton API*;
 - 2. запустить программу *install.exe*;
- установка *АРІ* произойдет автоматически;
- для размещения программ *Crypton API* потребуется около 2.0 Мбайт свободного пространства на жестком диске.

- существует возможность разработать свое собственное ПО для работы с криптоплатой;
- обращение к шифратору осуществляется через прерывание *4Ch*;
- код функции, которая должна быть выполнена, передается через регистр *AL*;
- при возникновении ошибки *Carry_flag = 1*;

- значения кодов функций приведены ниже:
 - *0(1)* зашифрование данных на ключе ФК в режиме гаммирования (гаммирования с самовосстановлением);
 - 2(3) расшифрование данных на ключе ФК в режиме гаммирования (гаммирования с самовосстановлением).
 - *СХ*=число байт выходной информации (кратно 8 байт без синхропосылки);
 - *DS:SI*=>адрес входного буфера с исходной открытой (зашифрованной) информацией;
 - *ES:DI*=>адрес выходного буфера с выходной зашифрованной (расшифрованной) информацией. При шифровании 8 первых байт в обоих буферах синхропосылка, все остальные байты расшифровываемая информация. При расшифровке синхропосылка в выходной буфер не передается. Синхропосылка не учитывается при задании длины данных. Длина данных должна быть кратна 8 байтам;

- 4(8) ввод ключа ФК и расшифрование его на ключе ПК(ГК);
- 6 ввод ключа ПК и расшифрование его на ключе ГК;
- 10 ввод ключа ФК и расшифрование его на ключе ГК (аналогично режиму 8), но при вводе данные запрашиваются с ДСЧ;
- 12-14 ввод ключа ФК(ПК*, ГК*) без расшифрования:
 - *DS:SI*=>адрес буфера с 32 байтами ключевой информации;
- 5(9) вывод ключа ФК, зашифрованного на ключе ПК (ГК);
- 7(11) вывод ключа ПК, зашифрованного на ключе ГК (ФК):
 - *ES:DI*=>адрес буфера для записи 32 байт ключевой информации;

- 15* ввод узла замены (УЗ) (долговременного ключа) без расшифрования:
 - DS:SI=>адрес буфера с 64 байтами узла замены;
- 16 выработка имитоприставки для входных данных на ключе ФК:
 - *СХ*=число байт исходной информации;
 - *DS:SI*=>адрес буфера с исходной информацией;
 - *ES:DI*=>адрес буфера для 4 байт имитоприставки;
- 17,20 выработка имитоприставки для ключа ФК на ключе ПК (ГК);
- *18,19* выработка имитоприставки для ключа ПК на ключе ГК (ФК):
 - *ES:DI*=>адрес буфера для 4 байт имитоприставки;

- 21 перезапись ФК на место ГК с одновременным стиранием ФК на старом месте;
- **-** *22* обращение к ДСЧ:
 - *СХ*=число байт, считываемых с ДСЧ;
 - *ES:DI*=>адрес буфера для записи случайных чисел;
- 23 сброс устройства:
 - *выход*: *АН*=версия BIOS-а платы
 - *AL* = модификация версии BIOS-а платы или код 23, если плата не инициализирована;
 - *примечание*: после сброса вся ключевая информация в плате сохраняется;

- 24 зашифрование данных на ключе ФК в режиме гаммирования с самовосстановлением:
 - *АН*=число блоков информации по 512 байт макс. 127 блоков(т.е. 64Кбайт)
 - *СХ*=младшее слово синхропосылки
 - *DX*=старшее слово синхропосылки
 - *DS:SI*=>адрес буфера с исходной (открытой) информацией
 - *ES:DI*=>адрес буфера с выходной (зашифрованной) информацией
 - *примечание:* для зашифрования каждого блока берется синхропосылка из регистров СХ и DX. Перед зашифрованием следующего блока синхропосылка увеличивается на 1;
- 25 получение номера платы:
 - CX = число необходимых байт;
 - *ES:DI*=>адрес буфера для записи номера;
 - *выход*: *АН*=версия BIOS-а платы;
 - *AL*=модификация версии BIOS-а платы;
 - *ES:DI*=>строка с номером;
 - первые 4 байта есть номер платы в двоично-десятичном упакованном формате. Если СХ=0, то возвращается только регистр АХ.

- 26 расшифрование данных на ключе К1 в режиме гаммирования с самовосстановлением:
 - *АН*=число блоков информации по 512 байт макс. 127 блоков (т.е. 64Кбайт);
 - *СХ, DX* =младшее, старшее слово синхропосылки;
 - *DS:SI*=>адрес буфера с исходной (зашифрованной) информацией;
 - *ES:DI*=>адрес буфера с выходной (расшифрованной) информацией;
 - *примечание*: для расшифрования каждого блока берется синхропосылка из регистров СХ и DX. Перед расшифрованием следующего блока синхропосылка увеличивается на 1;
- 27* тестирование платы:
 - *DS:ES*=>сегмент буфера для размещения тестовой информации длиной не менее 4 Кбайт;
 - *SI=DI*=0;
 - *примечание:* после выполнения теста состояние УЗ и ГК не определено. Плата находится в начальном состоянии, требующем инициализации, т.е. ввода УЗ и ГК;

- 28* проверка состояния платы:
 - выход:
 - *CF*=0 указывает, что плата уже инициализирована;
 - *CF*=1 указывает на начальное состояние платы (необходимость загрузки УЗ и ГК;
- 29 обращение к ДСЧ с контролем:
 - *ES:DI* => адрес буфера для записи 512 байт случайных чисел;
- 30 установка недостоверных ГК:
 - загружаются разные ГК в СБИС узла шифрования. Функция применяется для установки аппаратуры в начальное состояние, требующее инициализации, т.е. ввода УЗ и ГК;
- 31 получение режима работы платы (значений переключателей):
 - выход: *AL*=инверсное значение переключателей код режима(3 младших бита переключателя);

- шифрование ключевой информации выполняется в режиме простой замены, в соответствии с *ГОСТ 28147-89*;
- для генерации ключей ФК и ПК рекомендуется использовать данные с ДСЧ (функция BIOS 22).
 Значения ключей ФК и ПК, считанные с ДСЧ, можно считать уже зашифрованными;
- для генерации ГК рекомендуется использовать данные с ДСЧ с контролем (функция BIOS 29);
- для шифрования блока данных необходима синхропосылка, которая не является секретной и может передаваться по каналам связи и храниться на внешних носителях в открытом виде;
- для генерации синхропосылки рекомендуется использовать данные с ДСЧ (функция BIOS 22);

Пакет программ Crypton API 2.2

• т.к. в многозадачных ОС, например, Windows шифратор может получать команды сразу от нескольких программ, то во избежание возникновения коллизий программы не имеют прямого доступа к шифратору и управляют им с помощью специальных программных АРІ-модулей, а именно универсального программного интерфейса *Crypton API*;

- *в функции* данного *АРІ* входит обеспечение корректного последовательного выполнения шифратором команд, инициированных различными программами:
 - для каждой программы создается отдельная сессия шифрования;
 - ресурсы шифратора поочередно переключаются между сессиями;
 - каждая сессия имеет собственный виртуальный шифратор со своими ключами шифрования, которые перезагружаются при переключении между сессиями.
 Это несколько напоминает разделение ресурсов ПК между приложениями в многозадачной операционной системе.

- кроме того, *АРІ* поддерживает возможность подключения различных типов шифраторов через драйверы со стандартным набором функций. Это исключает зависимость прикладной программы от конкретного типа шифратора. Например, вместо аппаратного шифратора можно использовать программный *Стуртоп Emulator*, работающий на уровне ядра операционной системы;
- таким образом, при обращении программы к УКЗД любая команда проходит четыре уровня:
 – приложений;
 - интерфейса между приложением и драйвером УКЗД;
 - ядра операционной системы драйвера УКЗД;
 - аппаратный (собственно уровень шифратора).

Пакет программ Crypton API 2.2

- обеспечивает программный интерфейс к устройствам криптографической защиты данных (УКЗД) серии «Криптон» для приложений Win32 и программ ДОС в режиме эмуляции ДОС в операционных средах Windows 9x/NT/ 2000/2003;
- в состав данного пакета программ входят:
 драйверы УКЗД;
 - драйверы поддержки ДОС приложений в режиме эмуляции ДОС;
 - Win32-приложение, тестирующее УКЗД.

Программа конфигурации драйвера оборудования

«Driver setup» (*DrvSetup.exe*)

- Программа конфигурации драйвера оборудования «Driver setup» (DrvSetup.exe) позволяет:
 - получить информацию о версии и производителе текущего драйвера, текущую операционную систему, номер устройства;
 - сменить текущий драйвер (кнопка «Сменить»), выбрать драйвер УКЗД из списка доступных драйверов;
 - протестировать работоспособность драйвера;
 - получить информацию о количестве открытых сессий шифрования на текущий момент времени, выбрать базовые адреса ввода-вывода, протестировать работоспособность оборудования (кнопка «Тест»);
 - выбрать способ запуска драйвера УКЗД (в Windows NT с правами администратора);
 - включить/выключить регистрацию в системном журнале (только *Windows NT*).

Программа тестирования функций Crypton API

(*TestAPI.exe*). Основные возможности

- С помощью программы тестирования функций возможно:
- оценить возможности платы шифрования «Криптон»;
- протестировать некоторые параметры:
 - скорость шифрования и расшифрования;
 - правильность шифрования в многозадачном режиме;
 - правильность работы функций Crypton API.

Программа тестирования функций Crypton API (*TestAPI.exe*). Работа с драйвером

- На странице **«Драйвер»** представлена информация:
- о версии драйвера;
- о производителе драйвера;
- о версии *Crypton API (CryptAPI.dll)*.

Для начала работы необходимо:

- открыть драйвер (кнопка «Открыть»);
- выбрать тип драйвера (драйвер оборудования или эмулятор).

При успешном открытии драйвера создается сессия шифрования для доступа к функциям, предоставляемым УКЗД. Программа тестирования функций Crypton API (*TestAPI.exe*). Работа с драйвером

Сессия шифрования имеет:

- собственную виртуальную плату шифрования со своими ключами;
- К1 файловый ключ;
- К2 узел замены.
- Главный ключ и узел замены являются общими для всех сессий.

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «Ключи»

 на странице «Ключи» представлена информация о шифрованных текущих ключах

Скорость Ірайвер	Иног	озадачность	Функции	SA-101i		
Ключ К1, зашифрованный на ключе К3 ЦЦІЛГАУ<ГЎМsІЙћ<ГЎМsІЙћ<ГЎМsІЙћ			И	Зменить К1		
Ключ К1, зашифрованный на ключе К2 Ф‰й1и1qğy6t‴0\"у6t‴0\"у6t‴0\"				Ввод ключа К1 Ввод ключа К1 на К2 Ввод ключа К1 на К3 Ввод случайного ключа К1 на К3		
Ключ К2, зац Ф/?eҐay6eПF	иифрованн RdìПЕ!9Ѓж.	ый на ключе К3— z¦''Д@©f;	и	Ізменить К2		

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «Шифрование»

 на странице «Шифрование» можно протестировать шифрование и расшифровку на ключе К1, введя синхропосылку и любой текст («Строка для шифрования»), нажав кнопку «Зашифровать» («Расшифровать») и выбрав режим шифрования по ГОСТ 28147-89 («Гаммирование» или «Гаммирование с восстановлением»).

	кций Сгу	ypton API			_ [
Скорость	Мног	озадачность	Функци	и	SA-101
Драйвер 📔	Ключи	Шифрование	Имитов	ставка] дсч
инхропосылк	а (8 симво				
юсылка					
трока для ши	фрования:				
)чень секретн	ная информ	иация			
·····					
езультат:		Зашиф	ровать	Расши	фровать

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «Имитовставка»

Страница «Имитовставка» позволяет:

- посмотреть имитовставки для ключей;
- вычислить имитовставку для введенных данных (кнопка «Вычислить»):

Тесты функций Crypton API _ [
Скорость Многозадачно Драйвер Ключи Шифро	ость Функции SA-101i ование Имитовставка ДСЧ			
 Имитовставка для данных на К1				
Имитовставка для К1 на К3 0v5E7870BD (1601728701)	<u>Вычислить</u> Имитовставка для К1 на К2 0x334944EC (860439804)			

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «ДСЧ»

- страница «ДСЧ (Датчик случайных чисел)» позволяет сгенерировать блок случайных чисел;
- по кнопке «Новый» в окне «Результат» появится последовательность из беззнаковых 32-битовых случайных чисел:

Тесты фун	кций Сг	ypton API		- 🗆	
Скорость	Многозадачность		Функции	SA-101i	
Драйвер 📔	Ключи	Шифрование	Имитовставка	дсч	
езультат:					
)x0E9D2825, 0xDFB08EDA,	E9D2825, 0x8E7A5BE9, (FB08EDA, 0x55C20F4A,			<u>Вид</u> • 16-ричный	
0x37118357,	0x2CD	84013,	-C 10		
0x4C406477, 0x41ACBA10,	0xC0E 0x943	.855E4, 59D2A,	<u>v 1</u> 02	тичный	
0x5AD602F2,	0xB22	84D80,			
0x63576835, 0xDFBDAA53,	0x04A12B77, 0xC862AA0A			овый	
0x51CF3523,	0xADI	09811B,			
0xF770C9F7,	0x49F	4D472, 94250			
0x66521673, 0x468CD148	0x315 0x742	54336, (C289D			
DxAAB3BDF7,	0x524	EC8D5,			
0x79F10CE1,	0x7AD	OCE15,			
DxQA33A69E,	0xC44	F0E27,			
JXBA6UL8AA,	0x334	2263U, Emege			
0xD570EB35	Ox170				

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «Скорость»

- странице «Скорость» позволяет: определить скорость шифрования/расшифрования на ключе К1;
- в поле «Размер данных» необходимо ввести размер данных, при шифровании (расшифровании) которых будет измеряться скорость;
- средняя скорость будет отображаться в окне «Скорость (Кбайт/сек)».

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «Многозадачность»

- страница «Многозадачность» позволяет протестировать работу УКЗД или драйвераэмулятора в многозадачном режиме;
- при старте теста создаются 15 потоков, каждый из которых:
 - открывает сессию шифрования;
 - загружает случайный ключ *К1*;
 - начинает шифровать данные, размер которых указывается в поле «Размер данных (Кбайт)»;
- после зашифрования блок данных расшифровывается и расшифрованная информация сверяется с изначальной. Если данные не совпадают, поток останавливает свою работу и сообщает об ошибке. Для старта теста необходимо нажать кнопку «Старт» и выбрать режим шифрования.

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «Функции»

- на странице «Функции» можно выборочно протестировать основные функции Crypton API;
- можно задать количество повторов теста каждой функции;
- тест функции завершается успешно, если все повторы были успешными;
- на экран и в файл *testapi.txt* будет выведен результат тестирования.

Программа тестирования функций Crypton API (*TestAPI.exe*). Страница «*SA-101i* »

- страница *SA-101i* позволяет просмотреть содержимое памяти смарт-карты;
- для этого необходимо:
 - вставить смарт-карту в устройство *SA-101i*;
 - указать тип смарт-карты(4-64 кБит или 2-16 кБит);
 - нажать кнопку «Прочитать».