Государственное бюджетное профессиональное образовательное учреждение

«Невинномысский индустриальный колледж»

Дисциплина «Материаловедение» Тема: Цветные металлы и сплавы

Специальность 15.02.08 «Технология машиностроения»

Мансурова Л.П.

21.12.2015 20:52

Сегодня понедельник, 21 декабря 2015 г.

Цветные металлы и сплавы это металлы и сплавы, не являющиеся чёрными (все, кроме железа, хрома, марганца и их сплавов).

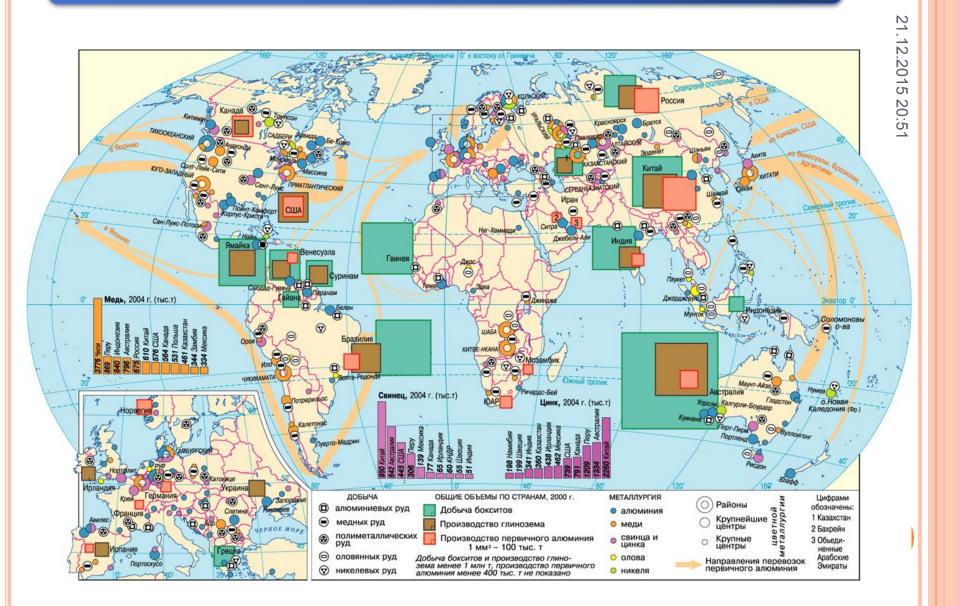
По своим физическим свойствам и назначению цветные металлы условно подразделяются на:

- тяжёлые медь, свинец, цинк, олово, никель
- лёгкие алюминий, титан, магний
- малые висмут, кадмий, сурьма, ртуть
- легирующие вольфрам, молибден, ванадий
- драгоценные золото, серебро, платина
- редкие галлий, германий, индий, цирконий

Цветная металлургия –

отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов.

Производственный комплекс отрасли состоит из горнодобывающих предприятий, обогатительных фабрик, металлургических и металлообрабатывающих заводов



Области применения цветных металлов и сплавов

Цветная металлургия в мире

Значение России в цветной металлургии мира

Металлы	Запасы, % (место в мире)	Производство, % (место в мире)
свинец	12 (3)	1,5 (4)
цинк	16 (1)	3 (9)
медь	11 (3)	7 (4)
никель	31 (1)	27 (1)
олово	27 (1)	9 (5)
титан	25 (1)	0,2 (14)
тантал	73 (1)	16 (1)
вольфрам	22 (2)	24 (2)
молибден	13 (3)	6 (4)

Золотодобывающий карьер Мурунтау. г. Зарафшан. Узбекистан

Золотодобывающий карьер Мурунтау. г. Зарафшан. Узбекистан

21.12.2015 20:51

Обозначения компонентов цветных сплавов:

М – медь Си

A – алюминий AI

Мц - марганец Мп

С - свинец Pb

Б - бериллий Ве

Мг – магний Мд

Ср – серебро Ад

Ж - железо Fe

Мш - мышьяк As

Cy – сурьма Sb

К – кремний Si

Н – никель Ni

Т – титан Ті

Кд – кадмий Cd

О – олово Sn

Ф – фосфор Р

X – хром Cr

Ц - цинк Zn

Алюминий – легкий металл серебристо-белого цвета с высокой электро и теплопроводностью, стойкий 🖁 коррозии

Пример обозначения: А999 - алюминий особой чистоты, в котором содержится не менее 99,999 % АІ; А5 - алюминий технической чистоты в котором 99,5 % алюминия.

Алюминиевые сплавы сочетают в себе лучшие свойства чистого алюминия и повышенные прочностные характеристики легирующих добавок. Так, железо, никель титан повышают жаропрочность алюминиевых сплавов. Медь, марганец, магний обеспечивают упрочняющую термообработку алюминиевых сплавов. В результате легирования и термической обработки удается в несколько раз - повысить прочность (ов с100 до 500 МПа) и твердость (НВ с 20 до 150) алюминия. Все сплавы алюминия подразделяют на деформируемые и литейные.

Олово — блестящий белый металл, обладающий низкой температурой плавления 231 °С и высокой пластичностью. Применяется в составе припоев, медных сплавов (бронза) и антифрикционных сплавов (баббит).

Свинец — металл голубовато-серого цвета, обладает низкой температурой плавления 327 °С и высокой пластичностью. Входит в состав медных сплавов (латунь, бронза), антифрикционных сплавов (баббит) и припоев.

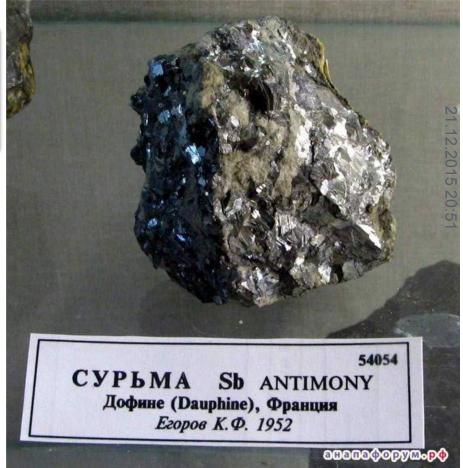
Цинк — серовато-белый металл с высокими литейными и антикоррозионными свойствами, температура плавления 419 °C. Входит в состав медных сплавов (латунь) и твердых припоев.

Титан — серебристо-белый металл с высокой механической прочностью и высокой коррозионной и химической стойкостью. Для производства титана используют рутил, ильменит, титанит и другие руды, содержащие 10 — 40 % двуокиси титана TiO2.

Магний — самый легкий из технических цветных металлов, его плотность 1,740 кг/м3, температура плавления 650 °C. Технически чистый магний непрочный, малопластичный металл с низкой тепло и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, торий, церий, цинк, цирконий и подвергают термообработке.

Вольфрам

Тантал


Ванадий

Сурьма

Цирконий

history.Lohotron.in.ua

Молибден

Медные сплавы: бронзы, латуни, сплавы меди с никелем

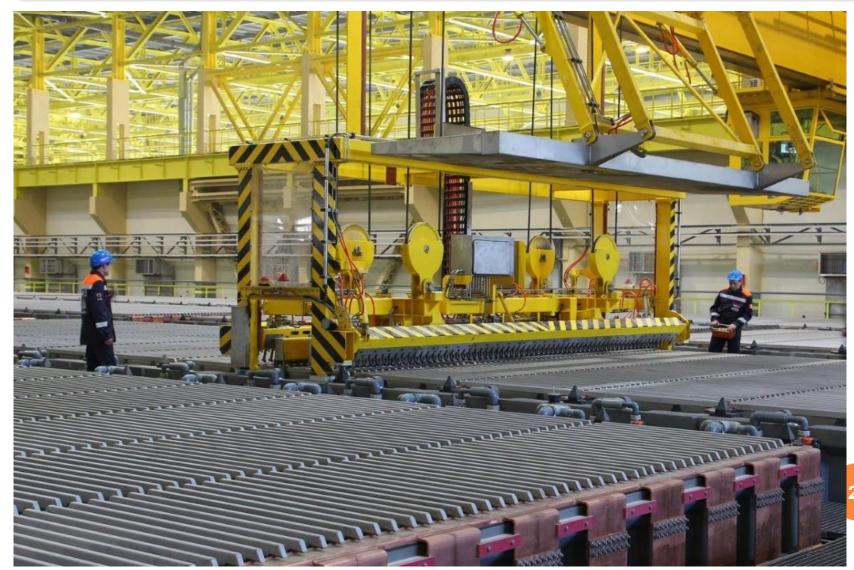
Бронзы - это сплавы меди с оловом (4 - 33%Sn хотя бывают без оловянные бронзы), свинцом (до 30%Pb), алюминием (5-11%AL), кремнием (4-5%Si), сурьмой и фосфором (ГОСТ 493-79,ГОСТ 613-79,ГОСТ 5017-74,ГОСТ 18175-78).

 $\mathit{БрА9}\mathit{Ми2}\mathit{Л}$ - бронза, содержащая $9\%\mathit{Al}$, $2\%\mathit{Mn}$, остальное Cu

 $5p0\Phi 8,0-0,3$ - бронза наряду с медью содержащая 8% Sn~u~0,3% P

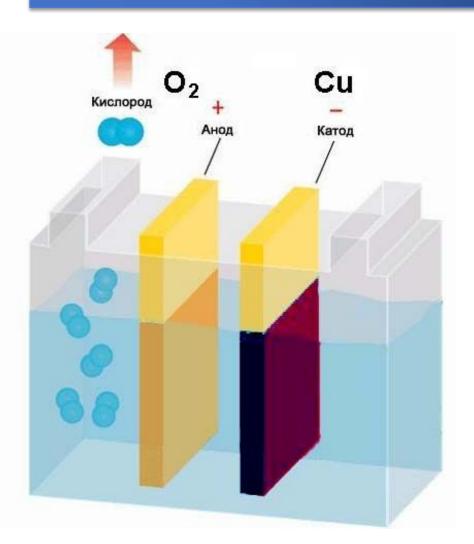
Л - указывает, что сплав литейный.

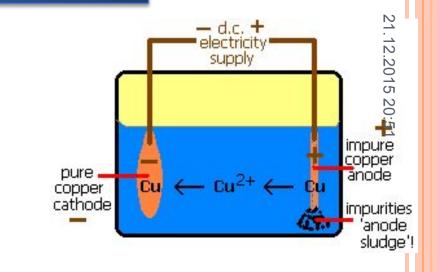
Латуни - сплавы меди с цинком (до 50%Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца

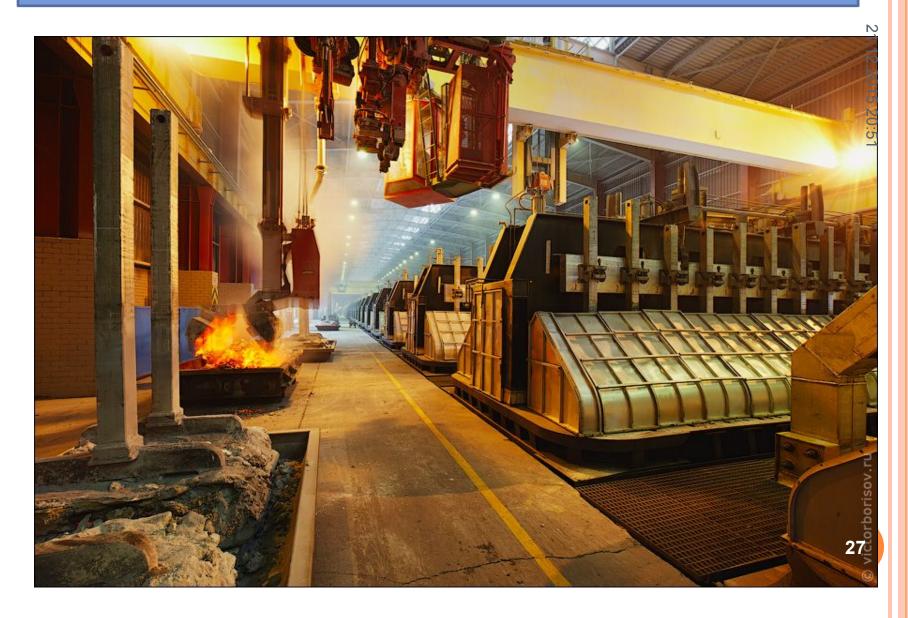


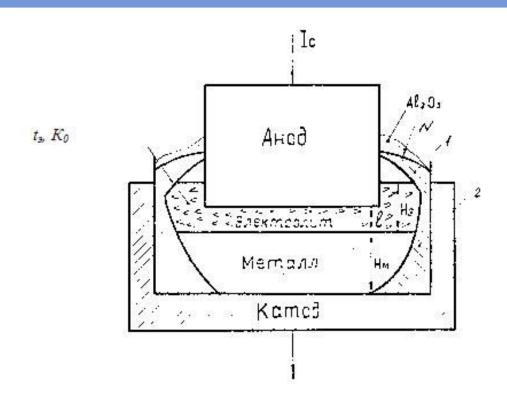
2

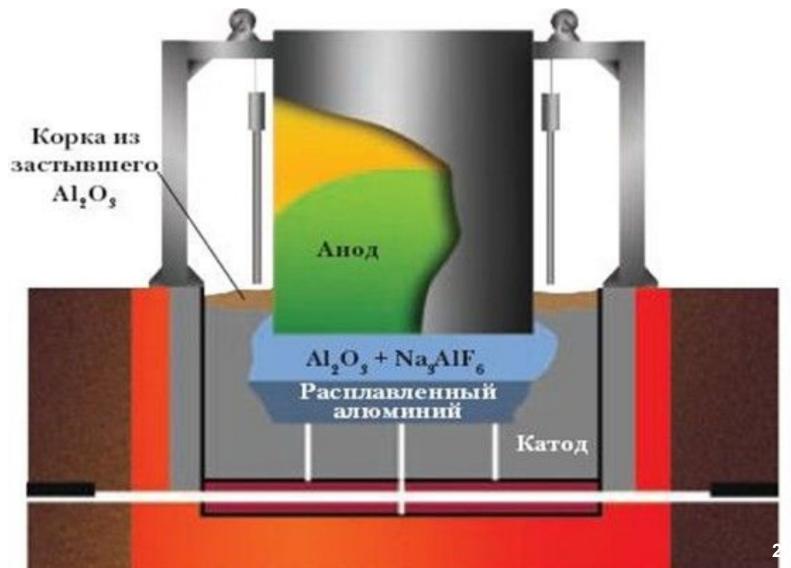
2.2015 20:51


Получение цветных металлов Цех электролиза меди




Электролиз меди






Цех электролиза алюминия

Технологический процесс получения алюминия осуществляется путем разложения криолито - глиноземного расплава постоянным током. Процесс электролиза протекает непрерывно с момента пуска ванны до ее полного выхода из строя. На катоде выделяется жидкий алюминий.

