Chapter 2
Introduction to
Java Applications

Java™ How to Program, 9/e

ﬁ

OBJECTIVES

In this chapter you'll learn:

m To write simple Java applications.

m To use input and output statements.

m Java’s primitive types.

m Basic memory concepts.

m To use arithmetic operators.

m The precedence of arithmetic operators.
m To write decision-making statements.

m To use relational and equality operators.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Introduction

Your First Program in Java: Printing a Line of Text
Modifying Your First Java Program

Displaying Text with printf

Another Application: Adding Integers

Memory Concepts

Arithmetic

Decision Making: Equality and Relational Operators
Wrap-Up

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.1 Introduction

0 Java application programming
1 Use tools from the JDK to compile and run programes.

0 Videos at www .deitel.com/books/jhtp9/

= Help you get started with Eclipse and NetBeans integrated
development environments.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text

1 Java application

= A computer program that executes when you use the java
command to launch the Java Virtual Machine (JVM).

1 Sample program 1n Fig. 2.1 displays a line of text.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 2.1: Welcomel.java
// Text-printing program.

public class Welcomel
{
// main method begins execution of Java application
public static void main(String[] args)
{
System.out.println("Welcome to Java Programming!"™);
} // end method main
} // end class Welcomel

- OO VWO ~NONUWNDL WN=

Welcome to Java Programming!

Fig. 2.1 | Text-printing program.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Comments
// Fig. 2.1: Welcomel.java
= // indicates that the line is a comment.
= Used to document programs and improve their readability.
= Compiler ignores comments.

= A comment that begins with // is an end-of-line comment—it terminates at
the end of the line on which it appears.

1 Traditional comment, can be spread over several lines as in

/* This is a traditional comment. It
can be split over multiple lines */

= This type of comment begins with /* and ends with */.

= All text between the delimiters 1s ignored by the compiler.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

0 Javadoc comments
= Delimited by /** and */.

= All text between the Javadoc comment delimiters 1s ignored by
the compiler.

= Enable you to embed program documentation directly in your
programes.

= The javadoc utility program (Appendix M) reads Javadoc
comments and uses them to prepare your program’s
documentation in HTML format.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 2.1

Forgetting one of the delimiters of a traditional or Java-
doc comment is a syntax error. A syntax error occurs
when the compiler encounters code that violates Java’s
language rules (i.e., its syntax). These rules are similar to
a natural language’s grammar rules specifying sentence
structure. Syntax errors are also called compiler errors,
compile-time errors or compilation errors, because the
compiler detects them during the compilation phase. The
compiler responds by issuing an error message and pre-
venting your program from compiling.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.1

Some organizations require that every program begin
with a comment that states the purpose of the program
and the author, date and time when the program was

last modiified.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Blank lines and space characters
= Make programs easier to read.

= Blank lines, spaces and tabs are known as white space (or
whitespace).

= White space 1s 1gnored by the compiler.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.2
Use blank lines and spaces to enhance program readabil-

ity.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Class declaration
public class Welcome1

= Every Java program consists of at least one class that you
define.

= class keyword introduces a class declaration and is
immediately followed by the class name.

= Keywords (Appendix C) are reserved for use by Java and are
always spelled with all lowercase letters.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Class names

= By convention, begin with a capital letter and capitalize the
first letter of each word they include (e.g.,
SampleClassName).

= A class name 1s an identifier—a series of characters consisting
of letters, digits, underscores (_) and dollar signs ($) that does
not begin with a digit and does not contain spaces.

= Java is case sensitive—uppercase and lowercase letters are
distinct—so a1 and A1 are different (but both valid)
identifiers.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 2.2

A public class must be placed in a file that has the same
name as the class (in terms of both spelling and capital-
ization) plus the . java extension; otherwise, a compila-
tion error occurs. For example, pub11ic class Welcome
must be placed in a file named Welcome. java.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Braces
= A left brace, {, begins the body of every class declaration.
= A corresponding right brace, }, must end each class declaration.
= Code between braces should be indented.

= This indentation 1s one of the spacing conventions mentioned
carlier.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

<z, Error-Prevention Tip 2.1

When you type an opening left brace, {, immediately
type the closing right brace, }, then reposition the cursor
between the braces and indent to begin typing the body.
This practice helps prevent errors due to missing braces.

Many IDEs insert the braces for you.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 2.3
It’s a syntax error if braces do not occur in matching
pairs.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.3

Indent the entire body of each class declaration one “lev-
el” between the left brace and the right brace that delimit
the body of the class. We recommend using three spaces to

form a level of indent. This format emphasizes the class

declaration’s structure and makes it easier to read.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.4

Many IDEs insert indentation for you in all the right
places. The Tab key may also be used to indent code, but
tab stops vary among text editors. Most IDEs allow you
to configure tabs such that a specified number of spaces is
inserted each time you press the Tab key.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Declaring the ma1n Method
public static void main(String[] args)
= Starting point of every Java application.

= Parentheses after the identifier ma1n indicate that it’s a program
building block called a method.

= Java class declarations normally contain one or more methods.

= mailn must be defined as shown; otherwise, the JVM will not
execute the application.

= Methods perform tasks and can return information when they
complete their tasks.

= Keyword void indicates that this method will not return any
information.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Body of the method declaration

= Enclosed in left and right braces.

1 Statement
System.out.println("Welcome to Java Programming!");

= Instructs the computer to perform an action

e Print the string of characters contained between the double quotation
marks.

= A string 1s sometimes called a character string or a string literal.
= White-space characters in strings are not ignored by the compiler.

= Strings cannot span multiple lines of code.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.5

Indent the entire body of each method declaration one
“level” between the braces that define the body of the
method. This makes the structure of the method stand
out and makes the method declaration easier to read.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 System.out object
= Standard output object.

= Allows Java applications to display strings in the command
window from which the Java application executes.

1 System.out.println method
= Displays (or prints) a line of text in the command window.
= The string in the parentheses the argument to the method.

= Positions the output cursor at the beginning of the next line in
the command window.

1 Most statements end with a semicolon.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 2.2

" When learning how to program, sometimes it’s helpful to
“break” a working program so you can familiarize your-
self with the compiler’s syntax-error messages. These mes-
sages do not always state the exact problem in the code.
When you encounter an error message, it will give you an
idea of what caused the error. [Try removing a semicolon
or brace from the program of Fig. 2.1, then recompile
the program to see the error messages generated by the
omission. |

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

s Error-Prevention Tip 2.3

' When the compiler reports a syntax error, it may not be
on the line that the error message indicates. First, check
the line for which the error was reported. If you don’t
find an error on that line,, check several preceding lines.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 Compiling and Executing Your First Java Application

= Open a command window and change to the directory where the
program 1is stored.

= Many operating systems use the command cd to change directories.
= To compile the program, type
javac Welcome1. java

= [f the program contains no syntax errors, preceding command creates
a.class file (known as the class file) containing the
platform-independent Java bytecodes that represent the application.

« When we use the Java command to execute the application on a
given platform, these bytecodes will be translated by the JVM into
instructions that are understood by the underlying operating system.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

<». Error-Prevention Tip 2.4

% - When attempting to compile a program, if you receive a
message such as “bad command or filename,” “ja-
vac: command not found” or “' javac' is not
recognized as an internal or external com-
mand, operable program or batch file,” then
your Java software installation was not completed prop-
erly. If you're using the JDK, this indicates that the sys-
tem's PATH environment variable was not set properly.
Please carefully review the installation instructions in
the Before You Begin section of this book. On some sys-
tems, after correcting the PATH, you may need to reboot

your computer or open a new command window for
these settings to take effect.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 2.5
" Each syntax-error message contains the file name and
line number where the error occurred. For example,
Welcomel. java: 6 indicates that an error occurred at
line 6 in Welcomel. java. The rest of the message pro-
vides information about the syntax error.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

<z, Error-Prevention Tip 2.6
' The compiler error message “class Welcomel is
public, should be declared 1in a file named
Welcomel.java’ indicates that the file name does not
match the name of the pub11ic class in the file or that
you typed the class name incorrectly when compiling the
class.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.2 Our First Program in Java: Printing a Line of Text
(Cont.)

1 To execute the program, type java Welcome1.

1 Launches the JVM, which loads the .class file for
class Welcome1.

7 Note that the . class file-name extension is omitted
from the preceding command; otherwise, the JVM will
not execute the program.

1 The JVM calls method main to execute the program.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

o~

=X Select Command Prompt o | @ |[we3-]
C:\examples\ch@2\fig@2 01>javac Welcomel.java - You type this
. command to execute

the application

[
C:\examples\ch@2\figB2_ @1>5ava Welcomel
lelcome to Java Programming!

C:\examples\chB2\fige2_ 01> -

The program outputs to the screen
Welcome to Java Programming!

Fig. 2.2 | Executing Welcomel from the Command Prompt.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Error-Prevention Tip 2.7

When attempting to run a Java program, if you receive
a message such as “Exception in thread "main"
java. lang.NoClassDefFoundError:
Welcomel,” your CLASSPATH environment variable
has not been set properly. Please carefully review the in-
stallation instructions in the Before You Begin section of
this book. On some systems, you may need to reboot your

computer or open a new command window after config-
uring the CLASSPATH.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.3 Modifying Your First Java Program

1 Class Welcome2, shown in Fig. 2.3, uses two statements to
produce the same output as that shown in Fig. 2.1.

7 New and key features in each code listing are highlighted.
1 System.out’s method print displays a string.

0 Unlike println, print does not position the output
cursor at the beginning of the next line in the command
window.

= The next character the program displays will appear immediately
after the last character that print displays.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 2.3: Welcome2.java

2 // Printing a Tline of text with multiple statements.

3

4 public class Welcome2

5 {

6 // main method begins execution of Java application

T4 i i i i .
; ?Ub ic static void main(Stringl] args) PrintsWelcome to and leaves cursor on
- " " / ‘

9 System.out.print("Welcome to b same line

10 System.out.println("Java Programming!™); :) ;

I } // end method main \ Prints Java Programming! starting

12 } // end class Welcome2 where the cursor was positioned
previously, then outputs a newline
character

Welcome to Java Programming!

Fig. 2.3 | Printing a line of text with multiple statements.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.3 Modifying Your First Java Program (Cont.)

1 Newline characters indicate to System.out’s print and
println methods when to position the output cursor at the
beginning of the next line in the command window.

1 Newline characters are white-space characters.
1 The backslash (\) is called an escape character.

= Indicates a “special character”

1 Backslash is combined with the next character to form an escape
sequence.

1 The escape sequence \ N represents the newline character.

1 Complete list of escape sequences

java.sun.com/docs/books/jls/third_edition/html/
lexical.html#3.10.6.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 2.4: Welcome3.java

2 // Printing multiple Tines of text with a single statement.

3

4 public class Welcome3

5 {

6 // main method begins execution of Java application

7 public static void main(String[] args)

8 {

9 System.out.printin("Welcome\nto\nJava\nProgramming!"); = Emh\n”KW@SHROUHXECUSO”Dthe
10 1 // end method main next line, where output continues
11 } // end class Welcome3

Welcome

to

Java

Programming!

Fig. 2.4 | Printing multiple lines of text with a single statement.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

\n
\NE
N

\\
\"

Newline. Position the screen cursor at the beginning of the next line.
Horizontal tab. Move the screen cursor to the next tab stop.

Carriage return. Position the screen cursor at the beginning of the current
line—do 70t advance to the next line. Any characters output after the car-
riage return overwrite the characters previously output on that line.

Backslash. Used to print a backslash character.

Double quote. Used to print a double-quote character. For example,
System.out.println("\"in quotes\"");
displays "in quotes".

Fig. 2.5 | Some common escape sequences.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.4 Displaying Text with printf

[

System.out.printf method

= T means “formatted”

= displays formatted data

Multiple method arguments are placed in a comma-separated list.
Java allows large statements to be split over many lines.

= Cannot split a statement in the middle of an identifier or string.
Method printf’s first argument is a format string

= May consist of fixed text and format specifiers.

= Fixed text is output as it would be by print or println.

= Each format specifier is a placeholder for a value and specifies the type of data to output.

Format specifiers begin with a percent sign (%) and are followed by a character that
represents the data type.

Format specifier %S is a placeholder for a string.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.6
Place a space after each comma (,) in an argument list
to make programs more readable.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

// Fig. 2.6: Welcome4.java
// Displaying multiple Tines with method System.out.printf.

pubTic class Welcome4

{

// main method begins execution of Java application

public static void main(String[] args)

{
System.out.printf("%s\n%s\n", —]

OCO~NONUNDH WN -

Each %s is a placeholder for a String
that comes later in the argument list

10 "Welcome to", "Java Programming!"™); -‘““*‘“--~\~_““
11 } // end method main

12 } // end class Welcome4d

Statements can be split over multiple
lines.

Welcome to
Java Programming!

Fig. 2.6 | Displaying multiple lines with method System.out.printf.

© Copyright 1992-2012 by Pearson

Education, Inc. All Rights Reserved.

Common Programming Error 2.4
Splitting a statement in the middle of an identifier or a
SEYing is a Syntax error.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers

1 Integers
= Whole numbers, like —22, 7, 0 and 1024)

1 Programs remember numbers and other data in the
computer’s memory and access that data through
program elements called variables.

1 The program of Fig. 2.7 demonstrates these concepts.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

4>

1 // Fig. 2.7: Addition.java

2 // Addition program that displays the sum of two numbers. I T : e

3 dimport java.util.Scanner; // program uses class Scansaer MPOTLS Class scanner fOFUSE 1M thiS

4 program

5 public class Addition

6 {

7 // main method begins execution of Java application

8 public static void main(String[] args)

9 {

10 // create a Scanner to obtain input from the command window Cre;ites jcan;erfor:
11 Scanner input = new Scanner(System.in); = 1eedling g oml iz
12 user

13 int numberl; // first number to add .

14 int number2; // second number to add - '\/;iltr'la]l')lesdthatare declared but not
15 int sum; // sum of numberl and number?2 initiatize

16

17 System.out.print("Enter first integer: "); // prompt .

18 humberl = input.nextInt(); // read first number from user = Reads an int value
19 from the user

20 System.out.print("Enter second integer: "); // prompt .

21 humber2 = input.nextInt(); // read second number from user = Reads anotnen it
22 value from the user
23 sum = numberl + number2; // add numbers, then store total in sum

“K

. -) Sums the values of

Fig. 2.7 | Addition program that displays the sum of two numbers. (Part | of 2.) bl e

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

24

25 System.out.printf("Sum is %d\n", sum); // display sum
26 } // end method main

27 1} // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.7 | Addition program that displays the sum of two numbers. (Part 2 of 2.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

0 import declaration
= Helps the compiler locate a class that 1s used in this program.

= Rich set of predefined classes that you can reuse rather than
“reinventing the wheel.”

= Classes are grouped into packages—named groups of related
classes—and are collectively referred to as the Java class

library, or the Java Application Programming Interface (Java
API).

= You use 1mport declarations to identify the predefined
classes used in a Java program.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 2.5

All import declarations must appear before the first
class declaration in the file. Placing an import declara-
tion inside or after a class declaration is a syntax error.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

&z, Error-Prevention Tip 2.8

I Forgetting to include an import declaration for a class
used in your program typically results in a compilation
error containing a message such as “cannot find sym-
bol.” When this occurs, check that you provided the
proper import declarations and that the names in them
are correct, including proper capitalization.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

0 Variable declaration statement
Scanner 1input = new Scanner(System.in);

= Specifies the name (1nput) and type (Scanner) of a variable that is used
in this program.

0 Variable

= A location in the computer’s memory where a value can be stored for use
later in a program.

= Must be declared with a name and a type before they can be used.

= A variable’s name enables the program to access the value of the variable in
memory.

= The name can be any valid identifier.

= A variable’s type specifies what kind of information is stored at that location
in memory.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

0 Scanner
= Enables a program to read data for use in a program.

= Data can come from many sources, such as the user at the keyboard or a file
on disk.

= Before using a Scanner, you must create it and specify the source of the
data.

1 The equals sign (=) in a declaration indicates that the variable should be
initialized (1.e., prepared for use in the program) with the result of the
expression to the right of the equals sign.

1 The new keyword creates an object.

0 Standard input object, System.in, enables applications to read bytes of
information typed by the user.

1 Scanner object translates these bytes into types that can be used in a
program.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

0 Variable declaration statements

int number1; // first number to add
int number2: // second number to add
int sum;: // sum of number1 and number?2

declare that variables number 1, number2 and sum hold
data of type Iint

= They can hold integer.
= Range of values for an 1nt is —2,147,483,648 to +2,147,483,647.

= Actual 1nt values may not contain commas.

1 Several variables of the same type may be declared in one
declaration with the variable names separated by commas.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.7

Declare each variable on a separate line. This format al-
lows a descriptive comment to be inserted next to each
declaration.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.8

Choosing meaningful variable names helps a program to
be self-documenting (i.e., one can understand the pro-
gram simply by reading it rather than by reading man-
uals or viewing an excessive number of comments).

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.9

By convention, variable-name identifiers begin with a
lowercase letter, and every word in the name after the
first word begins with a capital letter. For example, vari-
able-name identifier £1rstNumber starts its second
word, Number, with a capital N.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

1 Prompt

= Output statement that directs the user to take a specific action.

1 Systemis a class.
= Part of package java.lang.

= Class System is not imported with an 1mport declaration at
the beginning of the program.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

% Software Engineering Observation 2.1

XX By default, package java. lang is imported in every
Java program; thus, classes in java. lang are the only
ones in the Java API that do not require an import
declaration.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

1 Scanner method nextInt

number1 = input.nextInt(); // read first number from user
= Obtains an integer from the user at the keyboard.

= Program waits for the user to type the number and press the Enter key
to submit the number to the program.

1 The result of the call to method nextInt is placed in
variable number 1 by using the assignment operator,

= “number gets the value of input.nextInt().”
= Operator = is called a binary operator—it has two operands.

= Everything to the right of the assignment operator, =, is always
evaluated before the assignment 1s performed.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.10
Placing spaces on either side of a binary operator makes
the program more readable.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

1 Arithmetic

sum = number1 + number2: // add numbers

= Assignment statement that calculates the sum of the variables
number1 and number2 then assigns the result to variable sum
by using the assignment operator, =.

= “sum gets the value of number1 + number2.”
= In general, calculations are performed 1n assignment statements.

= Portions of statements that contain calculations are called
expressions.

= An expression 1s any portion of a statement that has a value
associated with it.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.5 Another Application: Adding Integers (Cont.)

1 Integer formatted output
System.out.printf("Sum 1is %d\n", sum);
= Format specifier %d is a placeholder for an 1nt value

= The letter d stands for “decimal integer.”

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.6 Memory Concepts

1 Variables
= Every variable has a name, a type, a size (in bytes) and a value.

= When a new value 1s placed into a variable, the new value
replaces the previous value (if any)

= The previous value is lost.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

numberl 45

Fig. 2.8 | Memory location showing the name and value of variable number1.

numberl 45

number?2 72

Fig. 2.9 | Memory locations after storing values for numberl and number2.

numberl 45
number?2 72
sum 117

Fig. 2.10 | Memory locations after storing the sum of numberl and number2.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.7 Arithmetic

1 Arithmetic operators are summarized in Fig. 2.11.

1 The asterisk (*) indicates multiplication

1 The percent sign (%) is the remainder operator

1 The arithmetic operators are binary operators because
they each operate on two operands.

1 Integer division yields an integer quotient.

= Any fractional part in integer division 1s simply discarded (i.e.,
truncated)—no rounding occurs.

1 The remainder operator, %, yields the remainder after
division.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Java operation Operator Algebraic expression Java expression

Addition + f+7 i
Subtraction = p—c p
Multiplication & bm b
Division / xly or ;,—f or x+9y X
Remainder % r mod s r

Fig. 2.11 | Arithmetic operators.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

s
n < =3 N N

%

2.7 Arithmetic (Cont.)

1 Arithmetic expressions in Java must be written in
straight-line form to facilitate entering programs into the
computer.

1 Expressions such as “a divided by b” must be written as a
/ b, so that all constants, variables and operators appear in a
straight line.

1 Parentheses are used to group terms in expressions in the
same manner as in algebraic expressions.

1 If an expression contains nested parentheses, the expression
in the innermost set of parentheses 1s evaluated first.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.7 Arithmetic (Cont.)

0 Rules of operator precedence
= Multiplication, division and remainder operations are applied first.

= If an expression contains several such operations, they are applied from left
to right.

= Multiplication, division and remainder operators have the same level of
precedence.

= Addition and subtraction operations are applied next.

= If an expression contains several such operations, the operators are applied
from left to right.

= Addition and subtraction operators have the same level of precedence.

1 When we say that operators are applied from left to right, we are
referring to their associativity.

1 Some operators associate from right to left.
1 Complete precedence chart is included in Appendix A.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

e Multiplication Evaluated first. If there are several operators of this
/ Division type, they're evaluated from left to right.

% Remainder

- Addition Evaluated next. If there are several operators of this
- Subtraction type, they're evaluated from left to right.

= Assignment Evaluated last.

Fig. 2.12 | Precedence of arithmetic operators.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

2 *5*5 4+ 3 %5 4+ 7;
2 * 5 1s 10

$—1

10 * 5 + 3 * 5 + 7;
10 * 5 is 50
50 + 3 5 + 7;

3 * 5 4s 15
50 + 15 + 7;
50 + 15 is 65

|

\
65 + 7;
65 + 7 is 72

+—I

72

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in'y)

ig. 2.13 | Orderin which a second-degree polynomial is evaluated.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.7 Arithmetic (Cont.)

1 As 1n algebra, 1t’s acceptable to place redundant
parentheses (unnecessary parentheses) in an
ex-pression to make the expression clearer.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.8 Decision Making:
Equality and Relational Operators

1 Condition
= An expression that can be true or false.

1 if selection statement

= Allows a program to make a decision based on a condition’s value.
1 Equality operators (== and !=)
1 Relational operators (>, <, >= and <=)

1 Both equality operators have the same level of precedence, which
1s lower than that of the relational operators.

1 The equality operators associate from left to right.

1 The relational operators all have the same level of precedence
and also associate from left to right.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Standard algebraic Java equality Sample

Meaning of
Java condition

equality or relational or relational Java
operator operator condition
Equality operators

= X I=y
Relational operators

> > X >y

= < X <Yy

=2 >= X >=Y
< <= X <= Y

Fig. 2.14 | Equality and relational operators.

X is equal to y

X is not equal to y

X is greater than y
x is less than y
X is greater than or equal to y

X is less than or equal to y

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

1 // Fig. 2.15: Comparison.java

2 // Compare integers using if statements, relational operators
3 // and equality operators.

4 dimport java.util.Scanner; // program uses class Scanner

5

6 public class Comparison

7 {

8 // main method begins execution of Java application

] public static void main(String[] args)

10 {

11 // create Scanner to obtain input from command 1ine

12 Scanner input = new Scanner(System.in);

13

14 int numberl; // first number to compare

15 int number2; // second number to compare

16

17 System.out.print("Enter first integer: "); // prompt
18 numberl = input.nextInt(); // read first number from user
19
20 System.out.print("Enter second integer: "); // prompt
21 number2 = input.nextInt(); // read second number from user
22

Fig. 2.15 | Compare integers using i f statements, relational operators and equality
operators. (Part | of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

4>

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

if (numberl == number2)
System.out.printf("%d

if (numberl != number2)
System.out.printf("%d

if (numberl < number2)
System.out.printf("%d

if (numberl > number2)
System.out.printf("%d

if (numberl <= number2)
System.out.printf("%d

if (numberl >= number2)
System.out.printf("%d
} // end method main
} // end class Comparison

== %d\n", numberl, number2);

I= %d\n", numberl, number2);

< %d\n", numberl, number2);

> %d\n",

<= %d\n", numberl, number2);

>= %d\n", numberl, number2);

< | Output statement executes only if the
numbers are equal

Output statement executes only if the

-
numbers are not equal

Output statement executes only if
numberl is less than number2

-

Output statement executes only if

oberl sanbEne e numberl is greater than number?2

Output statement executes only if
numberl is less than or equal to
number2

-

=<— Qutput statement executes only if
numberl is greater than or equal to
humber?2

Fig. 2.15 | Compare integers using if statements, relational operators and equality
operators. (Part 2 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Enter first integer: 777
Enter second integer: 777

777 == 777
777 <= 777
777 >= 777

Enter first integer: 1000
Enter second integer: 2000

1000 !'= 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000

2000 !'= 1000
2000 > 1000
2000 >= 1000

Fig. 2.15 | Compare integers using if statements, relational operators and equality
operators. (Part 3 of 3.)

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

2.8 Decision Making:
Equality and Relational Operators (Cont.)

1 An 1T statement always begins with keyword 1T, followed
by a condition in parentheses.

= Expects one statement in its body, but may contain multiple
statements if they are enclosed in a set of braces ({}).

= The indentation of the body statement is not required, but it improves

the program’s readability by emphasizing that statements are part of
the body.

1 Note that there 1s no semicolon (;) at the end of the first
line of each 1f statement.
= Such a semicolon would result in a logic error at execution time.

= Treated as the empty statement—semicolon by itself.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 2.6

Confusing the equality operator, ==, with the assignment
operator, =, can cause a logic error or a syntax error. The
equality operator should be read as “is equal to” and the
assignment operator as “gets” or “gets the value of.” To
avoid confusion, some people read the equality operator
as “double equals” or “equals equals.”

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.11
Placing only one statement per line in a program en-
hances program readability.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Common Programming Error 2.7

Placing a semicolon immediately after the right paren-
thesis of the condition in an 1 statement is normally a
logic error.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

<z, Error-Prevention Tip 2.9

) A lengthy statement can be spread over several lines. If a
single statement must be split across lines, choose break-
ing points that make sense, such as after a comma in a
comma-separated list, or after an operator in a lengthy
expression. If a statement is split across two or more lines,

indent all subsequent lines until the end of the state-
ment.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

Good Programming Practice 2.12

When writing expressions containing many operators,
refer to the operator precedence chart (Appendix A) .
Confirm that the operations in the expression are per-
formed in the order you expect. If, in a complex expres-
sion, you re uncertain about the order of evaluation, use

parentheses to force the order, exactly as you'd do in alge-
braic expressions.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

/ % left to right multiplicative
= - left to right additive
< <= > >= left to right relational
—— = left to right equality
= right to left assignment

Fig. 2.16 | Precedence and associativity of operators discussed.

© Copyright 1992-2012 by Pearson
Education, Inc. All Rights Reserved.

