

NUFYP Mathematics

Lecture 2.1 Exponentials and Logarithms

Lecture slides prepared by: Robert Farrell Gonçalo Pinto Rustem Iskakov

Lecture Outline

- Exponent
- Exponential function
- Graphs of exponential functions
- Logarithm
- Graphs of logarithmic functions
- Laws of logarithms

What is exponent?

What is exponent? Exponent is an index or power.

Operation	Arithmetic Example	Algebra Example	
Addition	5 + 5 + 5	b+b+b	
Subtraction	7 - 5	b-a	
Multiplication	3 imes 5 or	a imes b or	
Division	$12 \div 4$ or	$b \div a$ or	
DIVISION	$\frac{12}{4}$	$\frac{b}{a}$	
Exponentiation	$3^{\frac{1}{2}}$	$a^{\frac{1}{2}}$	
	2^3	a^3	

		Operation	Arithmetic Example	Algebra Example
		Addition	5 + 5 + 5	b+b+b
Repeated addition		Subtraction	7 - 5	b-a
		Multiplication	3 imes 5 or	a imes b or
			$12 \div 4$ or	$b \div a$ or
		Division	$\frac{12}{4}$	$\frac{b}{a}$
Repeated multiplication		Exponentiation	$3^{\frac{1}{2}} \\ 2^{3}$	$a^{rac{1}{2}}a^{3}$

Exponential function

An *exponential function* has the form

• $a \neq 1, a > 0$

Examples: $f(x) = 2^x$, $f(x) = 3^x$, $f(x) = e^x$

2.1.1 Sketch the graph of Exponential function

Let us see some graphs of exponential functions with different bases on the same axes:

2019-2020

Examples: $f(x) = 2^{x}$, $f(x) = 3^{x}$, $f(x) = e^{x}$

Examp	le:	f(x) =	2 ^{<i>x</i>}	$g(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$
	Α	В	С	y
1	х	2^x	2^(-x)	$\mathbf{x}_{\mathbf{y}} = 2^{-x} \mathbf{x}_{\mathbf{y}} = 2^{x} \mathbf{x}_{\mathbf{y}}$
2	-3	1/8	8	
3	-2	1/4	4	
4	-1	1/2	2	
5	0	1	1	
6	1	2	1/2	
7	2	4	1/4	
8	3	8	1/8	

The graph of g(x) is a reflection of the graph of f(x) over the y-axis

Exa	ımp	le: J	f(x) =	2^x f	$(-x) = \left(\frac{1}{2}\right)^x = 2^{-x}$
		Α	В	С	y
	1	х	2^x	2^(-x)	$1_{\mathbf{y}} = 2^{-x} 1_{\mathbf{y}} = 2^{x} 1_{\mathbf{y}}$
	2	-3	1/8	8	
	3	-2	1/4	4	
	4	-1	1/2	2	
	5	0	1	1	
	6	1	2	1/2	
	7	2	4	1/4	
	8	3	8	1/8	

The graph of g(x) is a reflection of the graph of f(x) over the y-axis

An exponential function has more general form

 $g(x) = Af(x) = Aa^x$

 $(0, \mathbf{A})$ is the y-intercept

Examples: $f(x) = 5 * 2^x$, $f(x) = 7 * 3^x$,

$$f(x) = 2 * e^x$$

Recall from Lecture 1.5 Vertical scaling

Vertical Stretching and Shrinking of Graphs

To graph y = cf(x):

If c > 1, stretch the graph of y = f(x) vertically by a factor of c.

If 0 < c < 1, shrink the graph of y = f(x) vertically by a factor of *c*.

Example:
$$f(x) = 2^x$$
 $h(x) = 3 * 2^x$
 $f(x) = Aa^x$

 $g(x) = A a^{x}$

(0,*A*) is the *y*-intercept

What about *a*?

The value of y is multiplied by a for every one-unit increase of x.

Example: $f_1(x) = 2^x$

Exponential Growth

On the graph, if we move one unit to the right from any point on the curve, the *y* coordinate doubles. Thus, the curve becomes dramatically steeper as the value of *x* increases. This phenomenon is called *exponential growth*.

Exponential Decay

In general: *in the graph of* $f(x) = Aa^x$, (0, *A*) *is the y-intercept*.

Multiply

What about *a*? Notice from the table that the value of *y* is multiplied by a = 2 for every increase of *x* by 1. If we decrease *x* by 1, the *y* coordinate gets *divided* by a = 2.

Exponential Decay

When x increases by 1, $f_2(x)$ is multiplied by $\frac{1}{2}$. The function $f_1(x) = 2^x$ illustrates exponential growth, while $f_2(x) = \left(\frac{1}{2}\right)^x$

illustrates the opposite phenomenon: exponential decay.

2019-2020

For exponential graphs, the independent variable often represents time and so in this situation, instead of the letter x, the letter *t* is usually used. A quantity y experiences exponential growth if $y = Aa^t$ with a > 1. It experiences exponential decay if $y = \overline{Aa^t}$ with 0 < a < 1.

We shall return to this topic in the next lecture and show applications of it to real life context.

2.1.2 Write an expression in logarithmic form

Exponential form vs Logarithmic form

2019-2020

Exponential form vs Logarithmic form

Examples

 $\log_{10} 1000 =$ $\log_4 16 =$ $\log_{3} 27 =$ $\log_{5} 5 =$ $\log_{3} 1 =$ $\log_4(1/16) =$ $\log_{25} 5 =$

$$\log_{0.25} 16 =$$

Examples

 $\log_{10} 1000 = 3$ $\log_4 16 = 2$ $\log_{3} 27 = 3$ $\log_{5} 5 = 1$ $\log_{3} 1 = 0$ $\log_4(1/16) = -2$ $\log_{25} 5 = 1/2$

$$\log_{0.25} 16 = -2$$

Common Logarithm

The logarithm with base 10 is called the common logarithm and can be written using one of the following notations:

$$\log_{10} x = \log x = \lg x$$

Example log 10000 =4 log 101 ~ 2,0043

Base of logarithm

Can it be

- 1) Equal to zero?
- 2) Equal to 1?
- 3) Be a Negative number?
- 4) Be a Positive number?

Base of logarithm

Can it be 3) Be a Negative number?

$$\log_{-2} x = \frac{1}{2}$$

$$(-2)^{\frac{1}{2}} = x$$

$$\sqrt{-2} = x$$

Base of logarithm

Can it be 4) Be a Positive number?

2019-2020

What are the numbers that base of logarithm can be?

Argument, no matter what is a value of exponent.

2.1.3 Recognise that the Logarithmic function is an inverse of Exponential function

Since the functions

 $f(x)=e^x$ and $g(x)=\ln x$ are **inverses** of **each other**, the corresponding graphs are symmetric with respect to the line y=x.

2019-2020

2.1.4 Sketch the graph Logarithmic function

Example: Sketch graphs of $f(x)=2^x$ and $g(x)=\log_2 x$

Logarithmic Function

A logarithmic function has the form $f(x) = a + b * \log_k(cx + d)$

(*b*, *B* and *C* are constants with $k > 0, k \neq 1$)

Quick Examples

 $f(x) = \log \boldsymbol{x}$

Computed by WolframjAlpha

2.1.5 Apply the laws of logs

Logarithm Identities

The following identities hold for all positive bases $a \neq 1$ and $b \neq 1$, all positive numbers x and y, and every real number r. These identities follow from the laws of exponents.

1.
$$\log_b(xy) = \log_b x + \log_b y$$

2. $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
3. $\log_b(x^r) = r \log_b x$
4. $\log_b b = 1; \log_b 1 = 0$
5. $\log_b\left(\frac{1}{x}\right) = -\log_b x$
6. $\log_b x = \frac{\log_a x}{\log_a b}$

$$\log_{2} 16 = \log_{2} 8 + \log_{2} 2$$

$$\log_{2} \left(\frac{5}{3}\right) = \log_{2} 5 - \log_{2} 3$$

$$\log_{2} (6^{5}) = 5 \log_{2} 6$$

$$\log_{2} 2 = 1; \ln e = 1; \log_{11} 1 = 0$$

$$\log_{2} \left(\frac{1}{3}\right) = -\log_{2} 3$$

$$\log_{2} 5 = \frac{\log_{10} 5}{\log_{10} 2} = \frac{\log 5}{\log 2}$$

2019-2020

As a sample, let us verify that the first identity holds. Let

 $\log_a x = b$ and $\log_a y = c$ from which we obtain

 $a^{b}=x$ and $a^{c}=y$ and therefore

$$xy = a^b$$
. $a^c = a^{b+c}$

that allows us to conclude that

$$\log_a(xy) = b + c = \log_a x + \log_a y$$

The proof for the change of the base identity can be found in the last slide.

Relationship with Exponential Functions The following two identities demonstrate that the operations of taking the base *b* logarithm and raising *b* to a power are *inverse* of each other.

IdentityQuick Examples1. $\log_b(b^x) = x$ $\log_2(2^7) = 7$ The power to which you raise b in order to get b^x is x2. $b^{\log b x} = x$ $5^{\log 5 8} = 8$ Raising b to the power to which it must be raised to get x, yields x

2.1.6 Solve Exponential and Logarithmic equations

Example 1 Solve the following equations **a.** $5^{-x} = 125$ **b.** $3^{2x-1} = 6$

Example 1 Solve the following equations **a.** $5^{-x} = 125$ **b.** $3^{2x-1} = 6$

a. Write the given equation $5^{-x} = 125$ in logarithmic form:

$$-x = \log_5 125$$

This gives

$$x = -\log_5 125 = -3$$

b. In logarithmic form, $3^{2x-1} = 6$ becomes

$$2x - 1 = \log_3 6$$
$$2x = 1 + \log_3 6$$

giving

$$x = (1 + \log_3 6)/2$$

 $\approx (2.6309)/2$
 ≈ 1.3155

Example 2 Solve the following equation $4^{x+1} = \frac{1}{3^{x-2}}$

Example 2 Solve the following equation $4^{x+1} = \frac{1}{3^{x-2}}$

Solution (1):

 $4^{x+1} = 3^{-(x-2)}$

 $4^{x+1} = 3^{2-x}$

 $\log_{10} 4^{x+1} = \log_{10} 3^{2-x}$

 $(x+1)\log_{10} 4 = (2-x)\log_{10} 3$

 $x \log_{10} 4 + \log_{10} 4 = 2 \log_{10} 3 - x$

Example 2 Solve the following equation

$$x(\log_{10} 4 + \log_{10} 3) = 2\log_{10} 3 - \log_{10} 4$$
$$x(\log_{10} 4 + \log_{10} 3) = 2\log_{10} 3 - \log_{10} 4$$
$$x = \frac{2\log_{10} 3 - \log_{10} 4}{\log_{10} 4 + \log_{10} 3}$$
$$x = \frac{\log_{10} \frac{9}{4}}{\log_{10} 12} \approx 0.33$$

Solution (2):

$$4^{x+1} = 3^{-(x-2)}$$

 $4^{x+1} = 3^{2-x}$

$$\log_{10} 4^{x+1} = \log_{10} 3^{2-x}$$

$$\frac{\log_4 4^{x+1}}{\log_4 10} = \frac{\log_3 3^{2-x}}{\log_3 10}$$

 $(x+1)\log_3 10 = (2-x)\log_4 10$

 $x \log_3 10 + \log_3 10 = 2 \log_4 10 - x$

$$x \log_3 10 + \log_3 10 = 2 \log_4 10 - x \log_4 10$$

 $x(\log_3 10 + \log_4 10) = 2\log_4 10 - \log_3 10$

$$x = \frac{2\log_4 10 - \log_3 10}{\log_3 10 + \log_4 10} \approx 0.33$$

Change the base of a log

Change-of-Base Formula

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Example 3
$$\log_{11} 9 = \frac{\log 9}{\log 11} \approx 0.91631$$

NAZARBAYEV UNIVERSITY

Your turn (Example 4)

Solve simultaneous equations, giving your answers as exact fractions: $8^y = 4^{2x+3}$

 $\log_2 y = \log_2 x + 4$

Your turn (Example 4)

Solve simultaneous equations, giving your answers as exact fractions: $8^{y} = 4^{2x+3}$ $\log_{2} y = \log_{2} x + 4$

Solutions:

Substitute ② into

 $8^{y} = 4^{2x+3} \qquad \log_{2} y - \log_{2} x = 4 \qquad 48x = 4x + 6$ $(2^{3})^{y} = (2^{2})^{2x+3} \qquad \log_{2} \frac{y}{x} = 4 \qquad 44x = 6$ $2^{3y} = 2^{2(2x+3)} \qquad x = \frac{3}{22}$ $3y = 4x + 6 \qquad y = 2^{4} = 16 \qquad y = 16x = \frac{24}{11}$

Your turn (Example 5)

If xy = 64 and $\log_x y + \log_y x = \frac{5}{2}$. Find x and y.

2019-2020

Your turn (Example 5)

NAZARBAYE

If xy = 64 and $\log_x y + \log_y x = \frac{5}{2}$. Find x and y. Solutions: $\log_x y + \log_y x = 5/2 \qquad (2u - 1)(u - 2) = 0 \qquad 2) \text{ If } u = 2, \log_x y = 2$ $u = \frac{1}{2} \quad \text{or} \quad u = 2 \qquad \rightarrow y = x^2$ $\log_x y + \frac{1}{\log_x y} = 5/2$ 1) If $u = \frac{1}{2}$, $\log_x y = \frac{1}{2}$ since xy = 64 $x^3 = 64$ Let $\log_x y = u$ $\rightarrow y = x^{\frac{1}{2}} = \sqrt{x}$ x = 4 $y = x^2 = 16$ $u + \frac{1}{u} = \frac{5}{2}$ since xy = 64 $x\sqrt{x} = 64 \quad x^{\frac{3}{2}} = 64$ $2u^2 + 2 = 5u$ $2u^2 - 5u + 2 = 0$ x = 16 $y = \sqrt{x} = 4$

Your turn (Example 6)

a. Given that $3 + 2\log_2 x = \log_2 y$, show that $y = 8x^2$.

- b. Hence, find the roots α and β , where $\alpha < \beta$, of the equation $3 + 2\log_2 x = \log_2(14x 3)$.
- c. Show that $\log_2 \alpha = -2$.

d. Calculate $\log_2 \beta$, giving your answer to 3 significant figures.

Your turn (Example 6)

Solutions: a. $3 + 2 \log_2 x = \log_2 y$ $\log_2 y - 2 \log_2 x = 3$ $\log_2 y - \log_2 x^2 = 3$ $\log_2 \frac{y}{r^2} = 3$ $\frac{y}{r^2} = 2^3 = 8$ $y = 8x^{2}$

c.
$$\log_2 \alpha = \log_2 \frac{1}{4} = -2$$

since $2^{-2} = \frac{1}{2^2} = \frac{1}{4}$

b. Comparing equations, y = 14x - 3 $8x^2 = 14x - 3$ $8x^2 - 14x + 3 = 0$ (4x - 1)(2x - 3) = 0 $x = 0.25 \text{ or } 1.5 \rightarrow \alpha = 0.25 \beta = 1.5$

d.
$$\log_2 \beta = \log_2 \frac{3}{2}$$

$$\log_2 1.5 = \frac{\log_{10} 1.5}{\log_{10} 2} = 0.585 \ (3 \ s. \ f.)$$

2019-2020

Learning outcomes

At the end of this lecture, you should be able to;

- 2.1.1 Sketch the graph of Exponential function
- 2.1.2 Write an expression in logarithmic form

2.1.3 Recognize that the Logarithmic function is an inverse of Exponential function

- 2.1.4 Sketch the graph of Logarithmic function
- 2.1.5 Apply Laws of logarithms
- 2.1.6 Solve Exponential and Logarithmic equations

Formulas to memorize

Laws of Logarithms:

1.
$$\log_b(xy) = \log_b x + \log_b y$$

2. $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$
3. $\log_b(x^r) = r \log_b x$
4. $\log_b b = 1; \log_b 1 = 0$
5. $\log_b\left(\frac{1}{x}\right) = -\log_b x$
6. $\log_b x = \frac{\log_a x}{\log_a b}$

Preview activity: Modelling with Exponential and Logarithmic functions

Watch this video

https://www.youtube.com/watch?v=0BSaMH 4hINY

Preview activity: Modelling with Exponential and Logarithmic functions How do you think...

- Which nature events can be modelled by using Exponential functions?
- 2. Can we use only Natural Exponential function for the modelling instead of using Exponential functions with different bases?
- 3. Which nature events can be modelled by using Logarithmic functions?

Change the base of a log

Proof of the Change-of-Base Formula

From

 $\log_a x = m$ we obtain

 $a^m = x$

and therefore

 $\log_b(a^m) = \log_b(x)$ then

$$m \log_{b} a = \log_{b} x$$

and finally
$$m = \frac{\log_{b} x}{\log_{b} a} \implies \log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$

