

Effect of polycarboxylate ether and citric acid on hydration of sulfoaluminate cement

Program M2
Internship at SPIN Center-PMMG

Performed by: Angsar SERIKKALI Supervised by: Alexandre GOVIN

INSPIRING INNOVATION SINCE 1816





# **Outline**

- General Introduction
- Materials and methods
- Results and Discussion
- Conclusion





### Introduction

# What is happening in cement production nowadays? What kind problems cement industry face with?

Portland cement is relatively low embodied energy compared to other building materials [Bing et al. 2014]

Manufacturing of Portland cement consumes approximately 2-3% of global energy [Juenger et al. 2011]

Cement industry contributes 5% of manmade carbon dioxide emissions [Bing et al. 2014]









### Introduction

### Why calcium sulphoaluminate cement?

CSA have attracted the attention of scientists, as well as of industry [Zajac et al. 2016]

Portland cements are produced from the firing of a calcite at a temperature of about 1450 °C [Bullerjahn. 2018]

CSA cements are produced by burning of clinker at 1250°C [Winnefeld. 2012]

CSA cements are not widely used in Europe and U.S.; its used in China for about 30 years [Winnefeld. 2012]



### Introduction

### **Hydration of CSA cement**

The hydration of cement is in simple terms of dissolution/precipitation process [Scrivener et al. 2011]

**1.** 
$$C_4A_3\overline{S}+18H \rightarrow C_4A\overline{S}H_{12}+2AH_3$$

2. 
$$C_4A_3\overline{S}+98H \rightarrow C_6A\overline{S}_3H_{32}+CAH_{10}+2AH_3$$

3. 
$$C_4A_3\overline{S}+C\overline{S}+38H \rightarrow C_6A\overline{S}_3H_{32}+2AH_3$$

$$\textbf{4.} \quad \textbf{C}_{4}\textbf{A}_{3}\overline{\textbf{S}} + \textbf{C}\overline{\textbf{S}} + \textbf{28H} \ \rightarrow \ \textbf{0.5C}_{6}\textbf{A}\overline{\textbf{S}}_{3}\textbf{H}_{32} + \textbf{0.5C}_{4}\textbf{A}\overline{\textbf{S}}\textbf{H}_{12} + \textbf{2AH}_{3}$$

#### The cement notation:

 $A=Al_2O_3$ , C=CaO,  $H=H_2O$ ,  $S=SiO_2$ ,  $\overline{S}=SO_3$ 

[Bullerjahn 2018]











# **Materials**

### Polycarboxylate ether



| Name  | Pure solide mw% | Р   | N   | n (Mp) | Mw     |
|-------|-----------------|-----|-----|--------|--------|
| PCE 1 | 20%             | 45  | 5   | 12     | 48272  |
| PCE 2 | 25%             | 114 | 5   | 15     | 138594 |
| PCE 3 | 30%             | 17  | 2.5 | 113    | 118984 |



#### **CSA** cement



| _ | 7            |
|---|--------------|
|   | $\checkmark$ |

|  | · ·                 |              |                 |                  |                 |          |                   |
|--|---------------------|--------------|-----------------|------------------|-----------------|----------|-------------------|
|  | Ye'elimite (C4A3\$) | Belite (C2S) | Anhydrite (C\$) | Bredigite        | Periclase (MgO) | Fluorite | Cacium Iron Oxide |
|  |                     | Larnite      |                 | (Ca14Mg2(SiO4)4) | reficiase (MgO) | (CaF2)   | (CaFe3O5)         |
|  | 49.44               | 8            | 21.9            | 11.25            | 4.84            | 3.13     | 1.43              |

### Citric acid















### Overview of the used techniques

| Characterisation                 | Methods                         | Location     | Analyzed by                        |  |
|----------------------------------|---------------------------------|--------------|------------------------------------|--|
|                                  | pH, conductivity, stoppage test | EMSE (C3-01) | Angsar SERIKKALI                   |  |
|                                  | ICP                             | EMSE (D3-14) | Frederic GALLICE, Angsar SERIKKALI |  |
| Hydration reactions and kinetics | IC                              | EMSE (D3-14) | Frederic GALLICE, Angsar SERIKKALI |  |
|                                  | тос                             | EMSE (C2-10) | Angsar SERIKKALI                   |  |
| Saturation indexes               | Thermodynamic modelling         | EMSE (C3-08) | Angsar SERIKKALI                   |  |
| Minaral a ammosition             | XRD                             | EMSE (D0-16) | Olivie VALFORT, Angsar SERIKKALI   |  |
| Mineral composition              | TGA                             | EMSE (C2-05) | Angsar SERIKKALI                   |  |





### Conductivity



CDM210-MeterLab

- V=1L
- Double walled and water-jacketed reactor
- T=24.6 °C±0.2
- 270-350 r/min
- Experiment time is around 24 hours
- Water to cement ratio: 20

Calibration:  $m_{KOH}$ =2.2365 g and  $\delta$ =2.097 mS/cm





### **Conductivity**



| Name of experiments                                | Water (L) | Cement (g) | Admixture          |  |
|----------------------------------------------------|-----------|------------|--------------------|--|
| CSA (Reference)                                    | 1         | 50         | -                  |  |
| CSA+PCE 1                                          | 1         | 50         | 0.1-0.3%*<br>PCE 1 |  |
| CSA+PCE 2                                          | 1         | 50         | 0.1-0.3%*<br>PCE 2 |  |
| CSA+PCE 3                                          | 1         | 50         | 0.1-0.3%*<br>PCE 3 |  |
| CSA+CA                                             | 1         | 50         | 0.2%* CA           |  |
| CSA+CA                                             | 1         | 50         | 0.4% * CA          |  |
| *% is shown regarding to the mass of cement (50 g) |           |            |                    |  |





### **Stoppage test**







# Solid part and liquid part methods

### Solid part

#### X-ray powder diffraction (XRD)

- X-ray diffractometer (BRUKER D8-A25)
- X-ray tube (Cu radiation)
- X-ray detector (Lynxeye XE-T)
- 2θ from ~5° to 90° with rate of diffraction each 0.015°
- Software: DiffracEVA
- Preparation method is backloading
- m=1g; 40% mw ZnO

#### Thermogravimetric analysis (TGA)

- Instrument : SETARAM 92-16.18
- · Gas: He
- Heating: Temperature from 30°C to 900°C; with rate of heating 10°C/min
- m=100-105 mg
- Data is fitted in the program Fytik





# Solid part and liquid part methods

### **Liquid part**

#### Inducted coupled plasma (ICP)

- Instrument:
- V=8 ml with
  - x10 dilution by 0.1M HCl
  - x100 dilution by 0.001M HCl
- Storage T=4°C
- Results in ppm for : Al, Ca, Fe, K, Na, S and Si

#### **Total organic carbon (TOC)**

- Instrument:
- V=8 ml
- T=850°C
- Gas: O<sub>2</sub>

#### Ionic chromatography (IC)

- Instrument:
- V=8-10 ml
  - x100 dilution by 0.1 HCl
  - x1000 dilution by 0.1 HCl
- T=850°C
- Gas: O<sub>2</sub>







 Pure dissolution period for ye'elimite is 30 seconds





### **Conductivity & ICP**

- ye'elimite dissolves rapidly
- etrringite continues to form slowly
- the highest dissolution/precipitation ratio
- formation of crystalline AH<sub>3</sub>
- $1. \quad C_4 A_3 \overline{S} + 18 H \ \rightarrow \ C_4 A \overline{S} H_{12} + 2 A H_3$
- $\textbf{2.} \quad \textbf{C}_{4}\textbf{A}_{3}\overline{\textbf{S}}\textbf{+98H} \,\rightarrow\, \textbf{C}_{6}\textbf{A}\overline{\textbf{S}}_{3}\textbf{H}_{32}\textbf{+}\textbf{C}\textbf{A}\textbf{H}_{10}\textbf{+2}\textbf{A}\textbf{H}_{3}$
- 3.  $C_4A_3\overline{S}+C\overline{S}+38H \rightarrow C_6A\overline{S}_3H_{32}+2AH_3$
- $\textbf{4.} \quad \textbf{C_4A_3}\overline{\textbf{S}} + \textbf{C}\overline{\textbf{S}} + \textbf{28H} \ \rightarrow \ \textbf{0.5C_6A}\overline{\textbf{S}_3} \textbf{H_{32}} + \textbf{0.5C_4A}\overline{\textbf{S}} \textbf{H_{12}} + \textbf{2AH_3}$

#### The cement notation:

 $A=Al_2O_3, \ C=CaO, \ H=H_2O, S=SiO_2, \overline{S}=SO_3 \quad \textbf{[Bullerjahn. 2018]}$ 







### **Conductivity of superplasticizers**







### Conductivity of reference, superplasticizers and citric acid









#### **XRD** results







#### **XRD** results

There is only qualitative analyses, not quantitative!











### Thermodynamic modelling (SI) results







#### **TGA results**







#### Conclusion

#### **Conductivity analyses**

- Reference
- 0.1-0.3% PCE 1
- 0.1-0.3% PCE 2
- 0.1-0.3% PCE 3
- 0.2% and 0.4% CA

#### IC,ICP and TOC analyses

- Reference
- 0.2% PCE 1
- 0.2% PCE 2
- 0.2% PCE 3
- 0.2% and 0.4% CA

#### Thermodynamic modelling (SI)

- Reference
- 0.2% PCE 1
- 0.2% PCE 2
- 0.2% PCE 3
- 0.2% and 0.4% CA

#### **TGA** analyses

- Reference
- 0.2% PCE 1
- 0.2% PCE 2
- 0.2% PCE 3
- 0.2% and 0.4% CA

#### **XRD** analyses

- Reference
- 0.2% PCE 1
- 0.2% PCE 2
- 0.2% PCE 3
- 0.2% CA





#### Conclusion

1



2

Ye'elimite 💥



