1DT057
DISTRIBUTED INFORMATION SYSTEM

DISTRIBUTED FILE SYSTEM

CHAPTER 8: DISTRIBUTED FILE
SYSTEM

Introduction to File System
File-System Structure

Directory Implementation
Allocation Methods

Distributed File System
Example: Sun NFS
Example: AFS

FILE-SYSTEM STRUCTURE

File structure
Logical storage unit
Collection of related information

File system resides on secondary storage (disks)
File system organized into layers

File control block — storage structure
consisting of information about a file

LAYERED FILE SYSTEM

application programs

ﬂ

logical file system

!

file-organization module

!

basic file system

!

I/O control

!

devices

ATYPICAL FILE CONTROL BLOCK

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

VIRTUAL FILE SYSTEMS

Virtual File Systems (VFS) provide an
object-oriented way of implementing file systems.

VFS allows the same system call interface (the
API) to be used for different types of file systems.

The API i1s to the VFS interface, rather than any
specific type of file system.

SCHEMATIC VIEW OF VIRTUAL FILE
SYSTEM

file-system interface

|

VFES interface

| | |

local file system local file system remote file system
type 1 type 2 type 1

DIRECTORY IMPLEMENTATION

Linear list of file names with pointer to the data
blocks.

simple to program

time-consuming to execute

Hash Table — linear list with hash data
structure.

decreases directory search time

collisions — situations where two file names hash to
the same location

fixed size

ALLOCATION METHODS

An allocation method refers to how disk blocks
are allocated for files:

Contiguous allocation
Linked allocation

Indexed allocation

CONTIGUOUS ALLOCATION

Each file occupies a set of contiguous
blocks on the disk

Simple — only starting location (block #)
and length (number of blocks) are required

Wasteful of space (dynamic
storage-allocation problem)

Files cannot grow

CONTIGUOUS ALLOCATION OF DISK
SPACE

<A directory
w .
- file start length
o] 1] 2] 301 count 0 2
f tr 14 3
4] 5[] 6] 7] ST 5
8] o[110111 st a4 4
tr f 6 2
12[]13[114[15[]
16117118]19[]
mail
20 J21[J22[]23[]
24[]25[126[127[]
list
28[29[]30[131[]
K //

EXTENT-BASED SYSTEMS

Many newer file systems (I.e. Veritas File

System) use a modified contiguous allocation
scheme

Extent-based file systems allocate disk blocks in
extents

An extent is a contiguous block of disks
Extents are allocated for file allocation
A file consists of one or more extents.

LINKED ALLOCATION
Each file 1s a linked list of disk blocks: blocks may be

scattered anywhere on the disk.

block

pointer

LINKED ALLOCATION

P N directory
\\“*--~__ﬂ-——f*”// file start end

jeep 9 25

12| Ja [4y [0S |
16 [17[]18[]19[|
20[]21 2|:|23|:|
24[125[126[]27[]
28[129 [30[|31]
e

FILE-ALLOCATION TABLE

directory entry

test | eee | D217 |
name start block 5
» 217 618
339 -«
618 339 |le— |
no. of disk blocks -1

FAT

INDEXED ALLOCATION
Brings all pointers together into the index block.

Logical view.

O 0o ot

index
table

EXAMPLE OF INDEXED

ALLOCATION

< directory
\—// file index block

o] 11 201 3[] e =

4] 5[] e |
8[| gqi%ﬂj

12[113[14

24 J25[J26[127[]

28[129[130 131[]
. /

INDEXED ALLOCATION — MAPPING
(CONT))

N

T
T

outer-inde T
X

index

table file

CUMDIINLD dvunniivir, UNIA (4N DY 1L L
BLOCK)

mode

owners (2)

timestamps (3)

—>» data

size block count

—» data

» data

direct blocks N o

—>» data

o> data
single indirect ——»{ o ; > data
e $+—»{ data =%
double indirect o » data
triple indirect z > » data
: » data

LINKED FREE SPACE LIST ON DISK

free-space list head

20[121]227 123[]

24 125[|26 |27 F

28[129[130[131[]
e /

le‘ DISTRIBUTED FILE SYSTEM

DISTRIBUTED FILE SYSTEMS

A special case of distributed system

Allows multi-computer systems to share
files

Examples:

NFS (Sun’s Network File System)
Windows NT, 2000, XP

Andrew File System (AFS) & others ...

DISTRIBUTED FILE SYSTEMS
(CONTINUED)

One of most common uses of distributed
computing

Goal: provide common view of centralized file
system, but distributed implementation.

Ability to open & update any file on any machine on
network

All of synchronization issues and capabilities of
shared local files

NAMING OF DISTRIBUTED FILES

Naming — mapping between logical and physical
objects.

A translziaarent. DFS hides the location where in the
network the file is stored.

Location transFarency — file name does not reveal
the file’s physical storage location.

File name denotes a specific, hidden, set of physical disk
blocks.

Convenient way to share data.
Could expose correspondence between component units and
machines.

Location independence — file name does not need
to be changed when the file’s physical storage location
changes.

Better file abstraction.

Promotes sharing the storage space itself.

Separates the naming hierarchy from the storage-devices
hierarchy.

DFS — THREE NAMING SCHEMES

Mount remote directories to local directories,

giving the appearance of a coherent local
directory tree

Mounted remote directories can be accessed
transparently.

Unix/Linux with NFS; Windows with mapped drives

Files named by combination of host name and
local name;

Guarantees a unique system wide name
Windows Network Places, Apollo Domain

Total integration of component file systems.

A single global name structure spans all the files in
the system.

If a server 1s unavailable, some arbitrary set of

directories on different machines also becomes
unavailable.

THE SUN NETWORK FILE SYSTEM
(NFS)

An 1implementation and a specification of a
software system for accessing remote files across

LANSs (or WANSs)

The implementation is part of the Solaris and
SunOS operating systems running on Sun
workstations using an unreliable datagram

protocol (UDP/IP protocol and Ethernet)

NFS (CONT))

Interconnected workstations viewed as a set of
independent machines with independent file
systems, which allows sharing among these file
systems in a transparent manner

A remote directory 1s mounted over a local file system
directory

The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

Specification of the remote directory for the mount
operation 1s nontransparent; the host name of the
remote directory has to be provided

Files in the remote directory can then be accessed in a

transparent manner

Subject to access-rights accreditation, potentially any
file system (or directory within a file system), can be
mounted remotely on top of any local directory

NFS (CONT.)

NFS 1s designed to operate 1n a heterogeneous
environment of different machines, operating
systems, and network architectures; the NFS
specifications independent of these media

This independence is achieved through the use of
RPC primitives built on top of an External Data
Representation (XDR) protocol used between two
1mplementation-independent interfaces

The NFS specification distinguishes between the
services provided by a mount mechanism and the
actual remote-file-access services

THREE INDEPENDENT FILE
SYSTEMS

L Si; S2;

usr usr usr

local shared

MOUNTING IN NFS

L

usr

local

usr

local

NFS MOUNT PROTOCOL

Establishes initial logical connection between server and
client

Mount operation includes name of remote directory to be
mounted and name of server machine storing it
Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses

File handle — a file-system identifier, and an inode number to
1dentify the mounted directory within the exported file system

The mount operation changes only the user’s view and does
not affect the server side

NFS PROTOCOL

Provides a set of remote procedure calls for remote file
operations. The procedures support the following
operations:

searching for a file within a directory

reading a set of directory entries

manipulating links and directories

accessing file attributes

reading and writing files

NFS servers are stateless; each request has to
provide a full set of arguments .

(NFS V4 is just coming available — very different,
stateful)

Modified data must be committed to the server’s disk
before results are returned to the client (lose
advantages of caching)

The NFS protocol does not provide
concurrency-control mechanisms

THREE MAJOR LAYERS OF NFS
ARCHITECTURE

UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors)

Virtual File System (VFS) layer — distinguishes local
files from remote ones, and local files are further
distinguished according to their file-system types

The VFS activates file-system-specific operations to handle
local requests according to their file-system types

Calls the NF'S protocol procedures for remote requests

NFS service layer — bottom layer of the architecture
Implements the NFS protocol

SCHEMATIC VIEW OF NFS

ARCHITECTURE

client

system-calls interface

!

server

|

T

S~

network

VFS interface — VFS interface
j , 1 l
other types of UNIX file NFS NFS UNIX file
file systems system client server system
RPC/XDR RPC/XDR

-

NFS PATH-NAME TRANSLATION

Performed by breaking the path into component
names and performing a separate NFS lookup
call for every pair of component name and
directory vnode

To make lookup faster, a directory name lookup
cache on the client’s side holds the vnodes for
remote directory names

NFS REMOTE OPERATIONS

Nearly one-to-one correspondence between regular
UNIX system calls and the NFS protocol RPCs
(except opening and closing files)

NF'S adheres to the remote-service paradigm, but
employs buffering and caching techniques for the sake
of performance

File-blocks cache — when a file is opened, the kernel
checks with the remote server whether to fetch or
revalidate the cached attributes

Cached file blocks are used only if the corresponding
cached attributes are up to date

File-attribute cache — the attribute cache 1s updated
whenever new attributes arrive from the server

Clients do not free delayed-write blocks until the

server confirms that the data have been written to
disk

ANDREW FILE SYSTEM (AFS)

Completely different kind of file system

Developed at CMU to support all student
computing.

Consists of workstation clients and dedicated file
server machines.

ANDREW FILE SYSTEM (AFS)

Stateful

Single name space
File has the same names everywhere in the
world.
Lots of local file caching
On workstation disks
For long periods of time
Originally whole files, now 64K file chunks.

Good for distant operation because of local
disk caching

AFS

Need for scaling led to reduction of
client-server message traffic.

Once a file 1s cached, all operations are performed
locally.

On close, if the file 1s modified, 1t 1s replaced on the
server.

The client assumes that i1ts cache 1s up to
date!

Server knows about all cached copies of file

Callback messages from the server saying
otherwise.

AFS

On file open()

If client has received a callback for file, 1t must fetch
new copy

Otherwise it uses its locally-cached copy.

Server crashes
Transparent to client if file is locally cached
Server must contact clients to find state of files

DISTRIBUTED FILE SYSTEMS
REQUIREMENTS

Performance 1s always an 1ssue

Tradeoff between performance and the
semantics of file operations (especially for

shared files).
Caching of file blocks 1s crucial in any file
system, distributed or otherwise.

As memories get larger, most read requests

can be serviced out of file buffer cache (local
memory).

Maintaining coherency of those caches is a
crucial design issue.

Current research addressing disconnected
file operation for mobile computers.

SUMMERY

Introduction to file system
Characteristics of distributed file system
Case study: Sun Network File System
Case study: The Andrew File system

Read chapter 8 [Coulouris et al.] after the
lecture...

