
1DT057
DISTRIBUTED INFORMATION SYSTEM

DISTRIBUTED FILE SYSTEM

1

 CHAPTER 8: DISTRIBUTED FILE
SYSTEM

� Introduction to File System
⚫ File-System Structure
⚫ Directory Implementation
⚫ Allocation Methods

� Distributed File System
� Example: Sun NFS
� Example: AFS

2

FILE-SYSTEM STRUCTURE

� File structure
⚫ Logical storage unit
⚫ Collection of related information

� File system resides on secondary storage (disks)
� File system organized into layers
� File control block – storage structure

consisting of information about a file

3

LAYERED FILE SYSTEM

4

A TYPICAL FILE CONTROL BLOCK

5

VIRTUAL FILE SYSTEMS

� Virtual File Systems (VFS) provide an
object-oriented way of implementing file systems.

� VFS allows the same system call interface (the
API) to be used for different types of file systems.

� The API is to the VFS interface, rather than any
specific type of file system.

6

SCHEMATIC VIEW OF VIRTUAL FILE
SYSTEM

7

DIRECTORY IMPLEMENTATION

� Linear list of file names with pointer to the data
blocks.
⚫ simple to program
⚫ time-consuming to execute

� Hash Table – linear list with hash data
structure.
⚫ decreases directory search time
⚫ collisions – situations where two file names hash to

the same location
⚫ fixed size

8

ALLOCATION METHODS

� An allocation method refers to how disk blocks
are allocated for files:

� Contiguous allocation

� Linked allocation

� Indexed allocation

9

CONTIGUOUS ALLOCATION
� Each file occupies a set of contiguous

blocks on the disk

� Simple – only starting location (block #)
and length (number of blocks) are required

� Wasteful of space (dynamic
storage-allocation problem)

� Files cannot grow

10

CONTIGUOUS ALLOCATION OF DISK
SPACE

11

EXTENT-BASED SYSTEMS

� Many newer file systems (I.e. Veritas File
System) use a modified contiguous allocation
scheme

� Extent-based file systems allocate disk blocks in
extents

� An extent is a contiguous block of disks
⚫ Extents are allocated for file allocation
⚫ A file consists of one or more extents.

12

LINKED ALLOCATION
� Each file is a linked list of disk blocks: blocks may be

scattered anywhere on the disk.

pointerblock
=

13

LINKED ALLOCATION

14

FILE-ALLOCATION TABLE

15

INDEXED ALLOCATION
� Brings all pointers together into the index block.
� Logical view.

index
table

16

EXAMPLE OF INDEXED
ALLOCATION

17

INDEXED ALLOCATION – MAPPING
(CONT.)



outer-inde
x

index
table

file
18

COMBINED SCHEME: UNIX (4K BYTES PER
BLOCK)

19

LINKED FREE SPACE LIST ON DISK

20

DISTRIBUTED FILE SYSTEM
21

DISTRIBUTED FILE SYSTEMS

� A special case of distributed system
� Allows multi-computer systems to share

files
� Examples:
⚫ NFS (Sun’s Network File System)
⚫ Windows NT, 2000, XP
⚫ Andrew File System (AFS) & others …

22

DISTRIBUTED FILE SYSTEMS
(CONTINUED)

� One of most common uses of distributed
computing

� Goal: provide common view of centralized file
system, but distributed implementation.
⚫ Ability to open & update any file on any machine on

network
⚫ All of synchronization issues and capabilities of

shared local files

23

NAMING OF DISTRIBUTED FILES
� Naming – mapping between logical and physical

objects.
� A transparent DFS hides the location where in the

network the file is stored.
� Location transparency – file name does not reveal

the file’s physical storage location.
⚫ File name denotes a specific, hidden, set of physical disk

blocks.
⚫ Convenient way to share data.
⚫ Could expose correspondence between component units and

machines.
� Location independence – file name does not need

to be changed when the file’s physical storage location
changes.
⚫ Better file abstraction.
⚫ Promotes sharing the storage space itself.
⚫ Separates the naming hierarchy from the storage-devices

hierarchy. 24

DFS – THREE NAMING SCHEMES

1. Mount remote directories to local directories,
giving the appearance of a coherent local
directory tree
● Mounted remote directories can be accessed

transparently.
● Unix/Linux with NFS; Windows with mapped drives

2. Files named by combination of host name and
local name;
● Guarantees a unique system wide name
● Windows Network Places, Apollo Domain

3. Total integration of component file systems.
● A single global name structure spans all the files in

the system.
● If a server is unavailable, some arbitrary set of

directories on different machines also becomes
unavailable.

25

THE SUN NETWORK FILE SYSTEM
(NFS)

� An implementation and a specification of a
software system for accessing remote files across
LANs (or WANs)

� The implementation is part of the Solaris and
SunOS operating systems running on Sun
workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet)

26

NFS (CONT.)

� Interconnected workstations viewed as a set of
independent machines with independent file
systems, which allows sharing among these file
systems in a transparent manner
⚫ A remote directory is mounted over a local file system

directory
� The mounted directory looks like an integral subtree of the

local file system, replacing the subtree descending from the
local directory

⚫ Specification of the remote directory for the mount
operation is nontransparent; the host name of the
remote directory has to be provided
� Files in the remote directory can then be accessed in a

transparent manner
⚫ Subject to access-rights accreditation, potentially any

file system (or directory within a file system), can be
mounted remotely on top of any local directory 27

NFS (CONT.)

� NFS is designed to operate in a heterogeneous
environment of different machines, operating
systems, and network architectures; the NFS
specifications independent of these media

� This independence is achieved through the use of
RPC primitives built on top of an External Data
Representation (XDR) protocol used between two
implementation-independent interfaces

� The NFS specification distinguishes between the
services provided by a mount mechanism and the
actual remote-file-access services 28

THREE INDEPENDENT FILE
SYSTEMS

29

MOUNTING IN NFS

Mount
s

Cascading
mounts 30

NFS MOUNT PROTOCOL
� Establishes initial logical connection between server and

client
� Mount operation includes name of remote directory to be

mounted and name of server machine storing it
⚫ Mount request is mapped to corresponding RPC and forwarded to

mount server running on server machine
⚫ Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to
mount them

� Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses

� File handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file system

� The mount operation changes only the user’s view and does
not affect the server side

31

NFS PROTOCOL
� Provides a set of remote procedure calls for remote file

operations. The procedures support the following
operations:
⚫ searching for a file within a directory
⚫ reading a set of directory entries
⚫ manipulating links and directories
⚫ accessing file attributes
⚫ reading and writing files

� NFS servers are stateless; each request has to
provide a full set of arguments

(NFS V4 is just coming available – very different,
stateful)

� Modified data must be committed to the server’s disk
before results are returned to the client (lose
advantages of caching)

� The NFS protocol does not provide
concurrency-control mechanisms

32

THREE MAJOR LAYERS OF NFS
ARCHITECTURE

� UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors)

� Virtual File System (VFS) layer – distinguishes local
files from remote ones, and local files are further
distinguished according to their file-system types
⚫ The VFS activates file-system-specific operations to handle

local requests according to their file-system types
⚫ Calls the NFS protocol procedures for remote requests

� NFS service layer – bottom layer of the architecture
⚫ Implements the NFS protocol

33

SCHEMATIC VIEW OF NFS
ARCHITECTURE

34

NFS PATH-NAME TRANSLATION

� Performed by breaking the path into component
names and performing a separate NFS lookup
call for every pair of component name and
directory vnode

� To make lookup faster, a directory name lookup
cache on the client’s side holds the vnodes for
remote directory names

35

NFS REMOTE OPERATIONS
� Nearly one-to-one correspondence between regular

UNIX system calls and the NFS protocol RPCs
(except opening and closing files)

� NFS adheres to the remote-service paradigm, but
employs buffering and caching techniques for the sake
of performance

� File-blocks cache – when a file is opened, the kernel
checks with the remote server whether to fetch or
revalidate the cached attributes
⚫ Cached file blocks are used only if the corresponding

cached attributes are up to date
� File-attribute cache – the attribute cache is updated

whenever new attributes arrive from the server
� Clients do not free delayed-write blocks until the

server confirms that the data have been written to
disk 36

ANDREW FILE SYSTEM (AFS)

� Completely different kind of file system

� Developed at CMU to support all student
computing.

� Consists of workstation clients and dedicated file
server machines.

37

ANDREW FILE SYSTEM (AFS)

� Stateful
� Single name space
⚫ File has the same names everywhere in the

world.

� Lots of local file caching
⚫ On workstation disks
⚫ For long periods of time
⚫ Originally whole files, now 64K file chunks.

� Good for distant operation because of local
disk caching 38

AFS

� Need for scaling led to reduction of
client-server message traffic.
⚫ Once a file is cached, all operations are performed

locally.
⚫ On close, if the file is modified, it is replaced on the

server.

� The client assumes that its cache is up to
date!

� Server knows about all cached copies of file
⚫ Callback messages from the server saying

otherwise.

� …
39

AFS

� On file open()
⚫ If client has received a callback for file, it must fetch

new copy
⚫ Otherwise it uses its locally-cached copy.

� Server crashes
⚫ Transparent to client if file is locally cached
⚫ Server must contact clients to find state of files

40

DISTRIBUTED FILE SYSTEMS
REQUIREMENTS

� Performance is always an issue
⚫ Tradeoff between performance and the

semantics of file operations (especially for
shared files).

� Caching of file blocks is crucial in any file
system, distributed or otherwise.
⚫ As memories get larger, most read requests

can be serviced out of file buffer cache (local
memory).

⚫ Maintaining coherency of those caches is a
crucial design issue.

� Current research addressing disconnected
file operation for mobile computers. 41

SUMMERY

� Introduction to file system
� Characteristics of distributed file system
� Case study: Sun Network File System
� Case study: The Andrew File system

� Read chapter 8 [Coulouris et al.] after the
lecture…

42

