Совершенствование средств контроля и диагностики вагонов

Малюшевский Валентин, УК-21

Основным направлением совершенствования средств контроля и диагностики вагонов является их максимальная автоматизация.

Максимальная автоматизация предполагает полный отказ от работы осмотрщиков вагонов путём использования автоматизированных систем неразрушающего контроля, осуществляющих определение дефектов вагонов на ходу поезда при подходе к станции. При этом отбраковка узла или детали вагона производится автоматически без участия оператора.

Автоматизированные диагностические комплексы контроля технического состояния вагона на ходу поезда должны выявлять следующие неисправности вагонов:

- : контроль температуры буксового узла и заторможенных колёс;
- · контроль волочения;
- · контроль габаритных размеров вагонов;
- · контроль дефектов колеса по кругу катания;
- · контроль геометрических параметров колеса;
- · контроль параметров ударно тягового механизма;
- контроль неравномерности загрузки вагонов;
- · контроль сползания буксы с шейки оси.

Современная инновационная классификация диагностических систем контроля параметров грузовых и пассажирских вагонов на дорогах СНГ и ближнего зарубежья

1. KTCM-02 — Комплекс технических средств многофункциональный для диагностики ходовых частей железнодорожного подвижного состава

КТСМ-02 представляет собой систему автоматического контроля, включающая в себя одну или несколько подсистем для обнаружения дефектных узлов и деталей подвижного состава (например: букс, колес, тормозов, габарита и т. д.). Основное назначение КТСМ-02 заключается в контроле параметров подвижного состава, привязанных к конкретным осям, или подвижным единицам, а также координации работы нему подсистем и обеспечении подключенных информационного взаимодействия через централизации с системами контроля и управления верхнего

уровня.

Технические характеристики

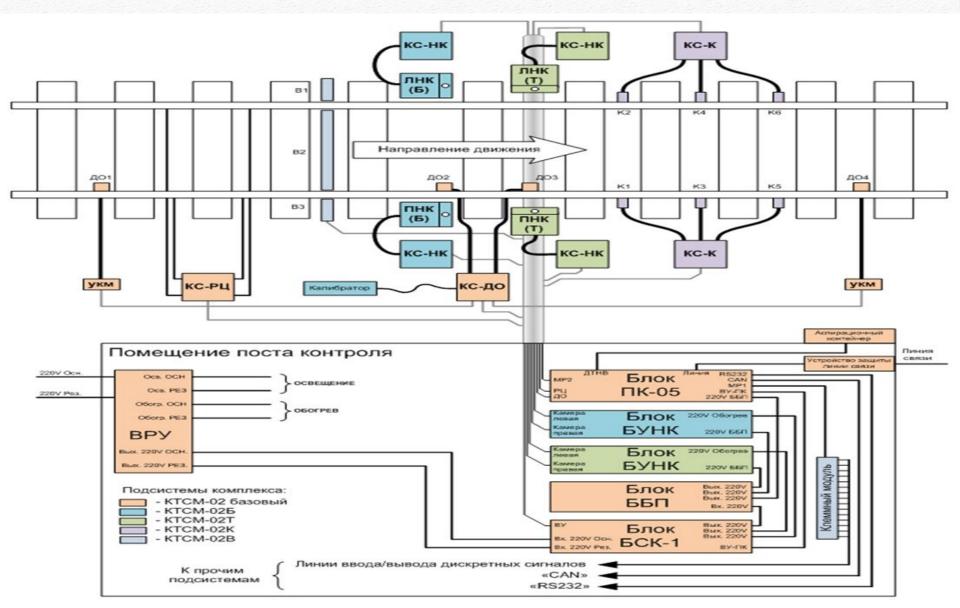
Диапазон скоростей движения поездов по участку контроля

Грузовых от 5 км/час до 150 км/час;

Пассажирских от 5 км/час до 250 км/час

Рабочая температура окружающей среды °С

Напольного оборудования от -60 до +55


Постового перегонного оборудования от +1 до +55

Станционного оборудования от +10 до +55

Напольное оборудование подсистемы обнаружения волочащихся деталей


Cxema KTCM-02

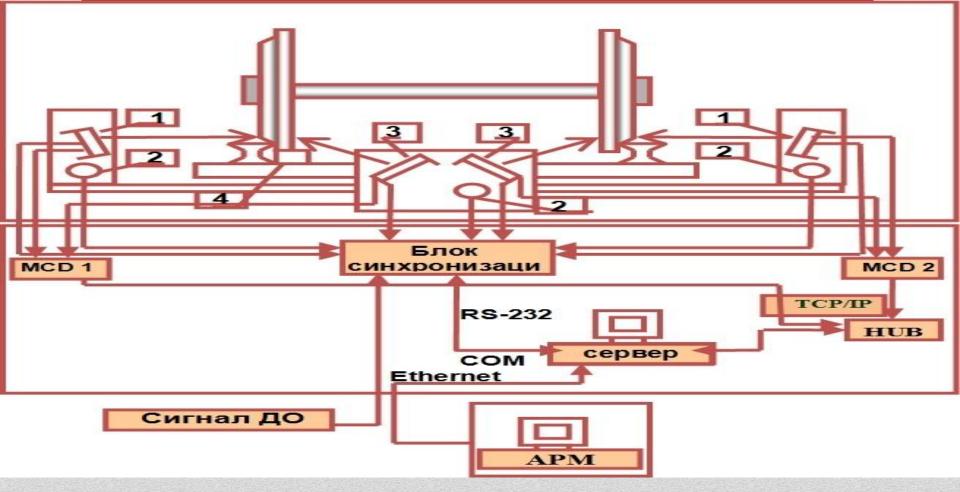
2. Система комплексного контроля технического состояния подвижного состава на ходу поезда ДИСК-2. Предназначена для оснащения станций с целью наиболее полного охвата контролем неисправностей подвижного состава. В состав системы входят подсистемы для обнаружения перегретых букс (ДИСК-Б); заторможенных колес (ДИСК-Т); волочащихся деталей (ДИСК-В); неровностей колес по кругу катания (ДИСК-К); отклонений верхнего габарита подвижного состава (ДИСК-Г); перегруза или неравномерной загрузки груза (ДИСК-3).

3. Автоматизированный бесконтактный комплекс контроля колесных пар подвижного состава. Предназначен для бесконтактного контроля и анализа параметров колесных пар подвижного состава.



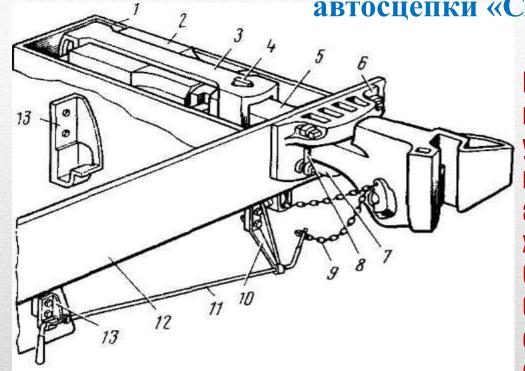
Параметры диагностики: толщина гребня колеса, разность и сумма толщин гребней на колесной паре, равномерный прокат, расстояние между внутренними гранями ободов колес, разность расстояний между внутренними гранями ободов, толщина обода, ширина обода, диаметр колеса, разность диаметров колес в одной колесной паре и в тележке, счет количества осей, определение типа подвижного состава, определение количества вагонов в составе, регистрация скорости движения поезда, регистрация времени контроля, направление движения состава.

Комплекс "Геопар-ВКП" Комплекс предназначен для автоматизированных измерений 27 геометрических параметров колесных пар грузовых вагонов на операциях входного и выходного контроля в вагонноколёсных мастерских (ВКМ), вагонных депо и цехах по ремонту и комплектованию колёсных



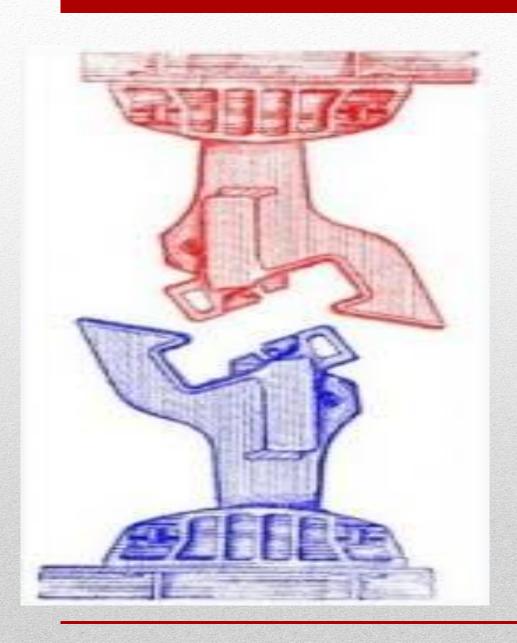
Комплекс "Геопар-КЦ

Комплекс предназначен для автоматизированных измерений 8 геометрических параметров колесных центров при их ремонте.


Контролируемые параметры:

Диаметр обода, непостоянство диаметра в поперечном и продольном сечениях, разность диаметров ободьев, расстояние между ободьями, разность расстояний меду ободьями, радиальное биение обода, ширина обода.

- 1. Датчики колесные наружные (правый, левый). 2. Датчик температуры для термостабилизации системы.
 - 3. Датчики колесные внутренние. 4. Магнитная педаль.

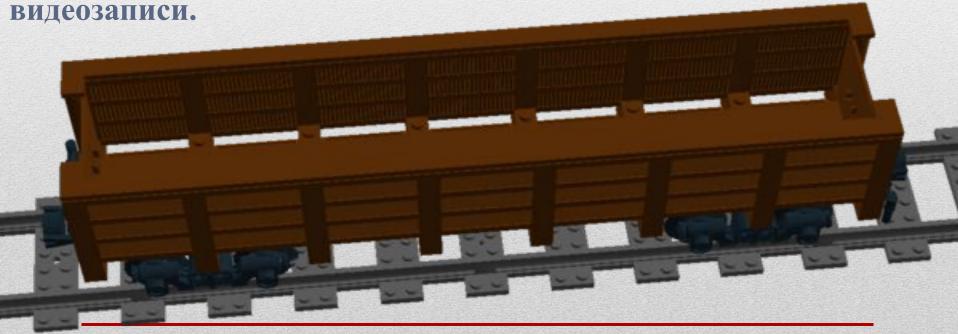

4. Система автоматизированного контроля механизма автосцепки «САКМА»

Расположение автосцепного устройства на тепловозе:

І стяжной ящик; 2 — поглощающий аппарат; 3 — тяговый хомут; 4 — клин; 5 — автосцепка; 6 — ударная розстка; 7 — центрирующая балочка; 8 — маятниковая подвеска; 9 — цепочка; 10 — державка; 11 — расцепной рычаг; 12 — буферный брус; 13 — кронштейн

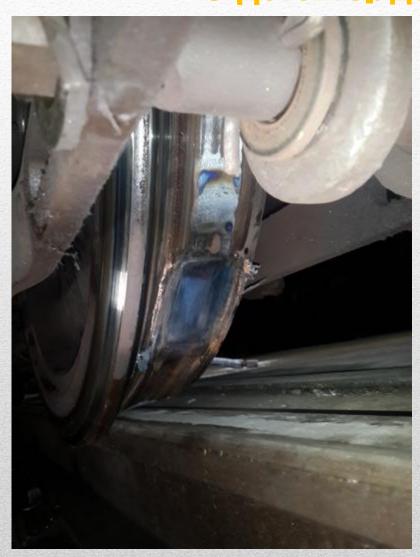
Применяется для контроля наличия неисправностей автосцепных устройств, по причине которых может произойти саморасцеп автосцепок грузовых вагонов на ходу поезда. В состав системы САКМА входят напольная камера; блок лазерных излучателей; стойка сопряжения; компьютер для обработки информации в помещении диагностического пункта; блок бесперебойного питания и модем.

Она контролирует:


- износ замков;
- излом направляющего зуба;
- · излом предохранителя от саморасцепа;
- · износ замков, поверхностей контура зацепления, перемычки между направляющим зубом и сигнальным отростком;
- · полуутопленное состояния замков;
- трещины в большом и малом зубе, приводящие в режиме тяги поезда к уширению зуба;
- уширение зева.

В состав системы САКМА входят напольная камера; блок лазерных излучателей; стойка сопряжения; компьютер для обработки информации в помещении диагностического пункта; блок бесперебойного питания и модем.

5. Автоматизированная система контроля открытых, незафиксированных и деформированных люков и дверей вагонов.

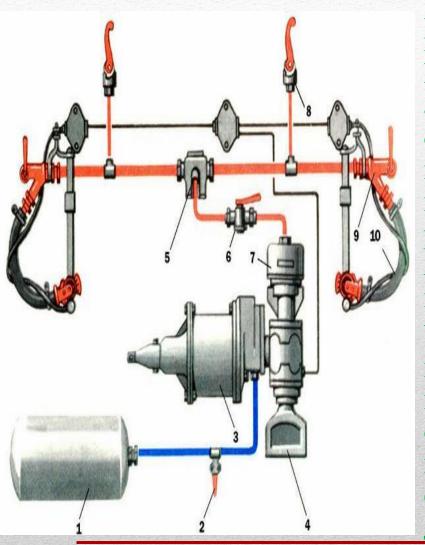

Система осуществляет отображение данных и сигналов тревоги в прибывающих на станцию поездах на APM оператора, а так же предоставляет возможность оператору осуществлять анализ технического и коммерческого состояния грузовых вагонов по

Система предназначена для контроля технического и коммерческого состояния грузовых вагонов в прибывающих на станцию поездах. Система автоматизированного анализа и обработки информации обеспечивает автоматизированное выявление деформаций, открытых люков, качки и других неисправностей на основе обработки и суммирования данных, поступающих от камер и датчиков.

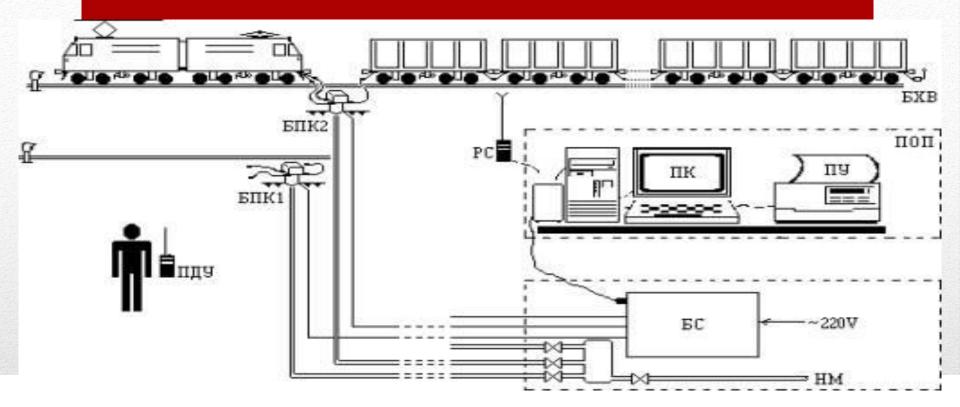
6. Детектор дефектных колес ДДК

Аппаратура ДЦК относится к напольным средствам автоматической диагностики технического состояния вагонов на ходу поезда и предназначена для выявления колёсных пар с дефектами на поверхности катания колёс, вызывающих недопустимые динамические перегрузки неподрессоренных элементов вагонов и пути.

7. Автоматизированный диагностический комплекс для измерения колесных пар вагонов на подходах к станции


Предназначен для измерения геометрический параметров поверхности катания, а также выявления износа и дефектов цельнокатаных колес на ходу поезда, регистрации неисправностей колесных пар и оперативной передачи полученной информации на ближайший ПТО. Он контролирует параметры поверхности катания колесных пар грузовых вагонов: толщину и высоту гребня, толщину и ширину обода, диаметр по поверхности катания.

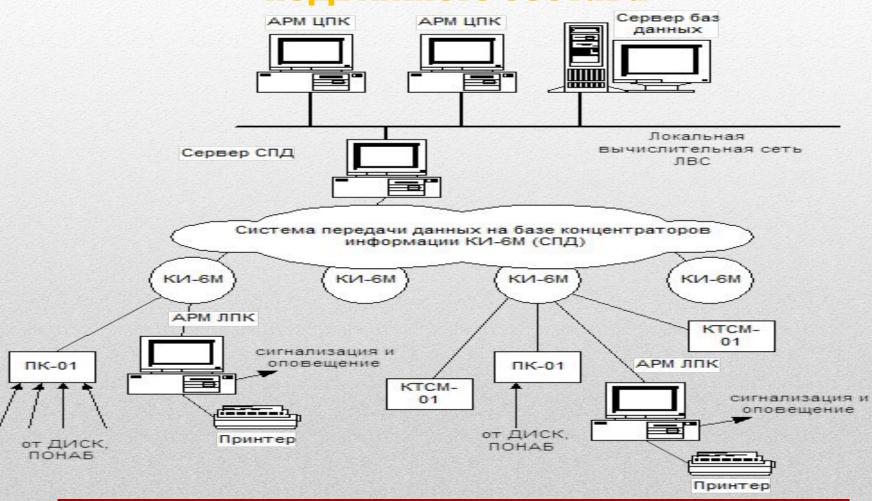
8. Устройство контроля сползания буксы с шейки оси



Предназначено для выявления на ходу поезда роликовых букс, имеющих сползание корпуса с шейки оси, вследствие разрушения торцевого крепления, регистрации таких букс и оперативной передачи полученной информации на ближайший ПТО.

9. Устройство контроля тормозов поезда УКТП

Предназначено для ускоренной зарядки и опробования тормозов поездов на ПТО. Устройство производит автоматическую регистрацию хода опробования тормозов и расчет параметров тормозной системы состава и локомотива с выводом данных в реальном времени на монитор, в сеть АСУ ПТО и на бумажный носитель в виде графиков и по форме ВУ-45. Устройство позволяет автоматизировать процессы подготовки тормозов подвижного состава в парках отправления, осуществлять контроль над качеством подготовки тормозов и соблюдением технологической дисциплины в парке отправления.


Устройство включает в себя:

- § пульт оператора парка ПОП, имеющий в составе: персональный компьютер ПК; принтер ПУ; блок связи БС; радиостанцию оператора РС;
- § пульт дистанционного управления ПДУ
- § электрические коммуникации, предназначенные для обмена информацией между блоками устройства и подачи питающего напряжения на БПК;
- § блок питательной напольной колонки БПК;
- § блок хвостового вагона БХВ, предназначенный для контроля давления в тормозной магистрали хвостового вагона.

10. Комплексная информационно-измерительная система технического диагностирования подвижного состава

Автоматизированная система контроля подвижного состава

Стоит отметить, что абсолютное большинство вышеперечисленных устройств успешно применяются на Белорусской железной дороге, позволяя тем самым значительно снизить затраты по обслуживанию грузовых вагонов и обеспечить большее качество при производстве работ.

Заключение

Применение комплексных систем ТД подвижного состава позволяет повысить безопасность движения за счет выработки рекомендаций об индивидуальных объемах ремонта каждой единицы подвижного состава с учетом действительного технического состояния, плюс немаловажен экономический эффект.

СПАСИБО ЗА ВНИМАНИЕ

