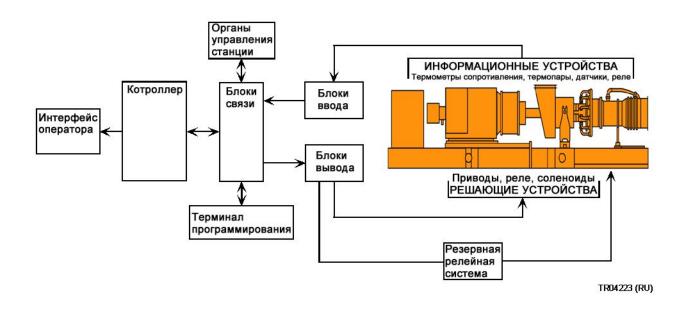


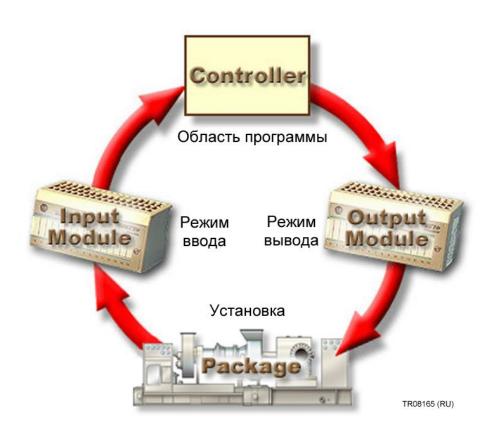
Работа системы управления Turbotronic 4

Занятие 1 Обзор системы управления

Задачи

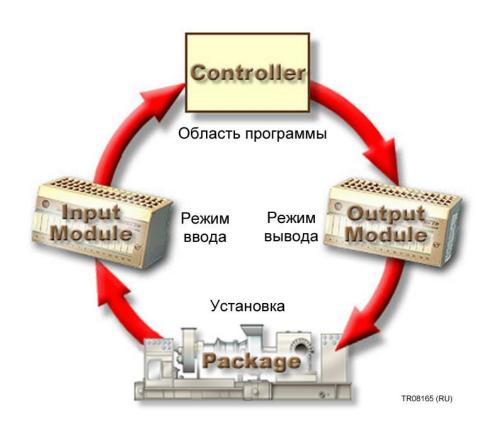

- 1. Опишите назначение и функции системы управления TT4
- 2. Опишите работу основных составных частей системы управления ТТ4
- 3. Опишите различные конфигурации системы управления и пути связи между составными частями, установленными в различных местах >

Назначение системы управления


- Датчики обеспечивают информацию
- Принимаются решения
- Осуществляются исполнительными устройствами

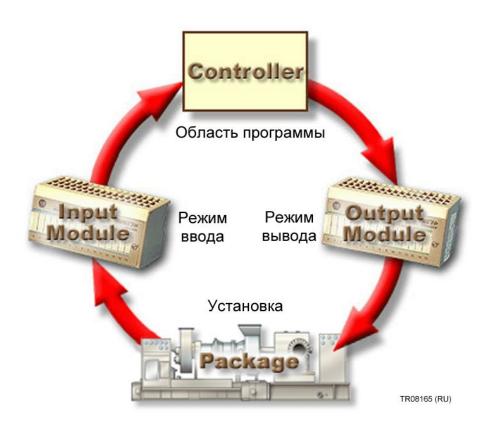
- Выполняет циклы
- Контролирует
- Защищает
- Сигнализация и остановы
- Графическое воспроизведение
- Резервная система на случай аварий >

Работа системы управления



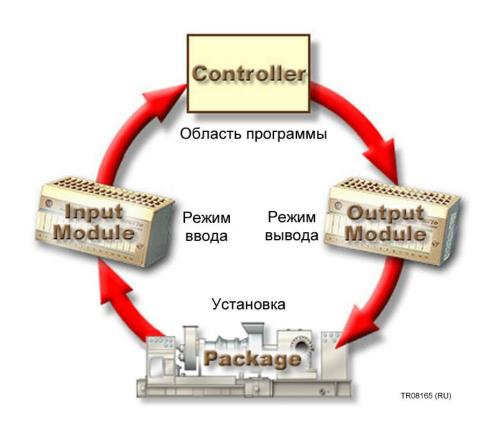
- Непрерывной цикл
- Пять основных частей:
- 1. Информационные устройства или датчики
- 2. Блоки ввода
- 3. Контроллер
- Блоки вывода
- 5. Исполнительные устройства или органы управления >

Информационные устройства



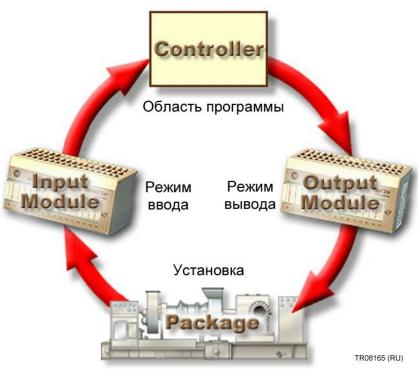
- Смонтированы на установке
- Преобразуют физические параметры в сигналы
 - Температура » Милливольты
 - Температура »Сопротивление
 - Давление » Миллиамперы
 - Давление » Напряжение
 - Частота вращения »
 Частота тока
 - Уровень » Напряжение

Блоки ввода



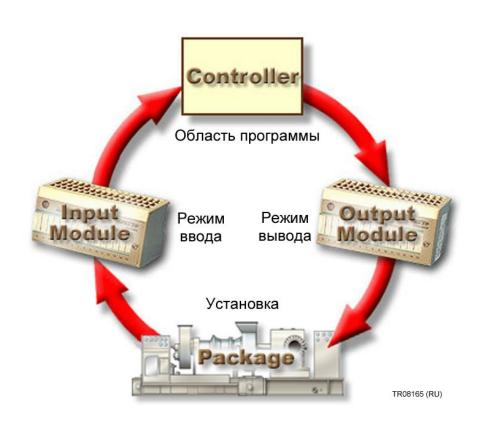
- Смонтированы в распределительном шкафу или в шкафу управления
- Преобразуют сигналы в данные
- 24В пост тока » 1
- 0В пост тока » 0
- 4 20 мА » Целое число (6240 31200)

Контроллер



- Смонтирован в распределительном шкафу или в шкафу управления
- Хранит данные
- Исполняет программы
- Принимает решения на основе данных >

Блоки вывода



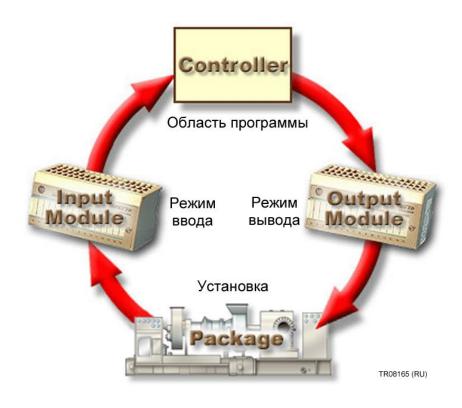
- Смонтированы в распределительном шкафу или в шкафу управления
- Преобразуют данные в сигналы
- 1 » 24В пост тока
- 0 » 0В пост тока
- Целое число (0-30840) » 4 20 мА >

Исполнительные устройства



- Решения основаны на данных
- Смонтированы на установке
- Преобразуют сигналы в механическое движение
 - Миллиамперы »Положение привода
 - Напряжение » Открыть электромагнитный клапан
 - Напряжение » Запитать обмотку реле >

Назначение системы управления -Сводка

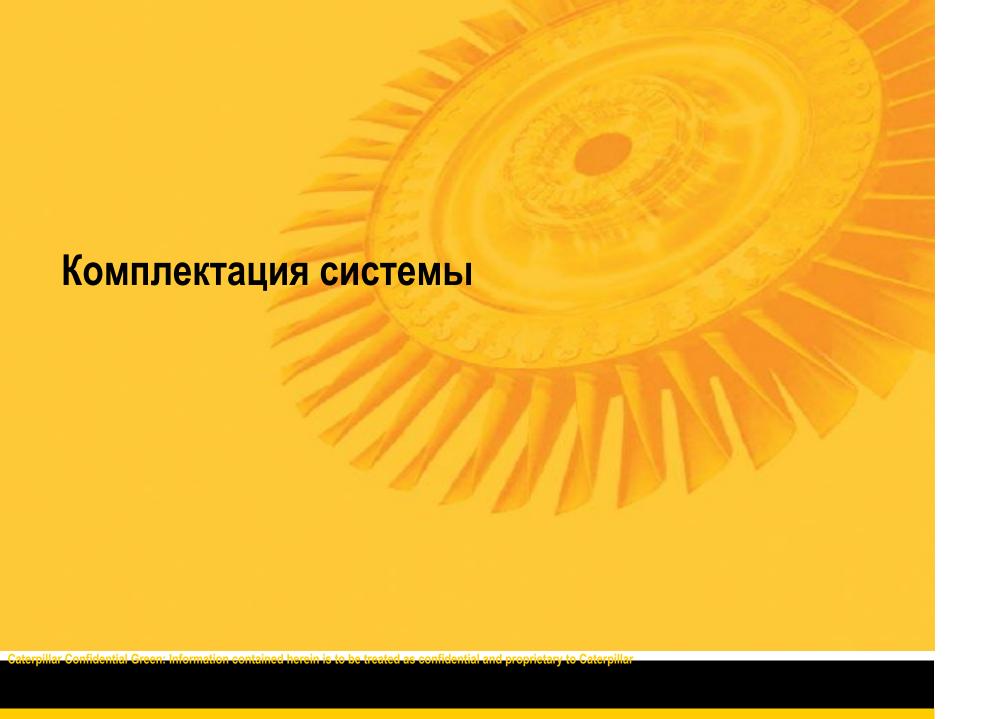


Виды внешних сигналов

- Дискретные
 - Вкл или Вык
 - 1 или 0
 - Переключатели
 - Реле
 - Соленоиды
- Аналоговые
 - Переменные параметры
 - Датчики
 - Термопары
 - Термометры сопротивления
 - Датчики частоты вращения
 - Преобразователи вибрации
 - Приводы >

Внешние устройства и сигналы

Вид устройства	Типичное назначение	Сигнал	Аналоговый или дискретный	Ввод или вывод
Сигнализатор уровня	Уровень маслобака	Напряжение	Дискретный	Ввод
Сигнализатор давления	Давление топливного газа	Напряжение	Дискретный	Ввод
Термометр сопротивления	Температура масла	Омы	Аналоговый	Ввод
Термопара	Температура газа двигателя	Милливольт	Аналоговый	Ввод
Датчик давления	Давление масла	Миллиампер	Аналоговый	Ввод
Датчик уровня	Уровень маслобака	Миллиампер	Аналоговый	Ввод
Магнитный датчик	Частота вращения двигателя	Частота тока	Аналоговый	Ввод
Соленоид	Привод запорного клапана	Напряжение	Дискретный	Вывод
Реле	Промежуточное управление	Напряжение	Дискретный	Вывод
Привод	Управление положением топливного клапана	Миллиампер	Аналоговый	Вывод


Пример цикла управления 1 - См. полное описание в рабочей тетради слушателя

- Турбина вращается на 102% вместо 100% по уставке
- Информационное устройство сигнал (частота т ока) в блок ввода
- Блок ввода сигналы в данные (целое число)
- Контроллер хранит данные преобразует обратно в %
- Контроллер выполняет программы частота вращения слишком высока - решение уменьшить команду подачи топлива - уменьшает данные, идущие в канал вывода
- Блок вывода преобразует данные в сигнал уменьшает величину в миллиамперах для привода
- Привод прикрывается
- Подача топлива падает двигатель замедляется уменьшение величины сигнала, идущего в блок вывода

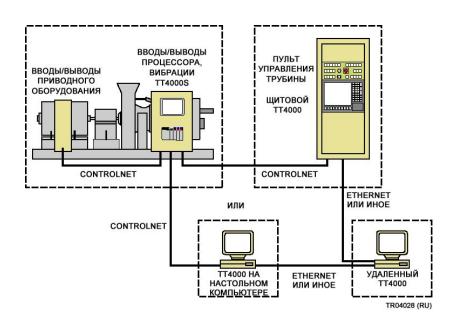
Пример цикла управления 2 - См. полное описание в рабочей тетради слушателя

- Упрощенная последовательность проверки предпусковой смазки.
- Оператор нажимает кнопку Пуск (Start) контакты замыкаются
- Блок ввода преобразует 24В пост тока в "1"
- Контроллер использует "1" для запуска последовательности предпусковой смазки
- Контроллер принимает решение о запуске насоса предпусковой смазки посылает
 "0" в блок вывода
- Блок вывода преобразует "0" в 0В пост тока
- Насос предпусковой и заключительной смазки запускается давление растет замыкается сигнализатор - направляет 24В пост тока в блок ввода
- Блок ввода преобразует 24В пост тока в "1"
- Контроллер использует "1" для подтверждения успешного запуска насоса разрешает начало пускового цикла
- При отпадании стартера насос больше не требуется команда изменяется на "1"
- Блок вывода преобразует "1" в 24В пост тока насос останавливается

Комплектация системы управления

- Комплектация зависит от категории опасности зоны и

предпочтений заказчика


1. На блоке

2. Внешняя >

Исполнение на блоке

 Уменьшается потребность в соединительных кабелях

На блоке:

- Контроллер
- Большинство или все блоки ввода/вывода
- Органы управления операторского интерфейса
- Дисплей ТТ4000-S

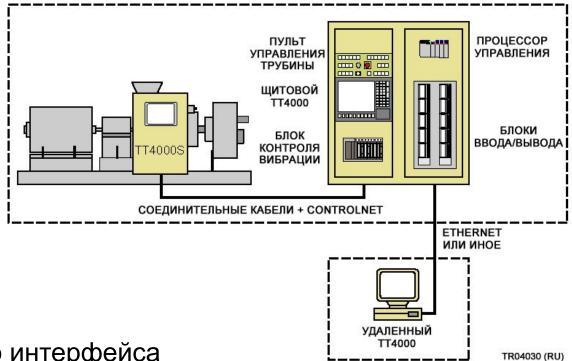
За дополнительную плату.

- Внешний шкаф управления
 - Органы управления операторского интерфейса

>

- Дисплей ТТ4000
- Десктоп ТТ4000
- Удаленный ТТ4000

Внешнее исполнение


 Требуются соединительные кабели и кабели связи

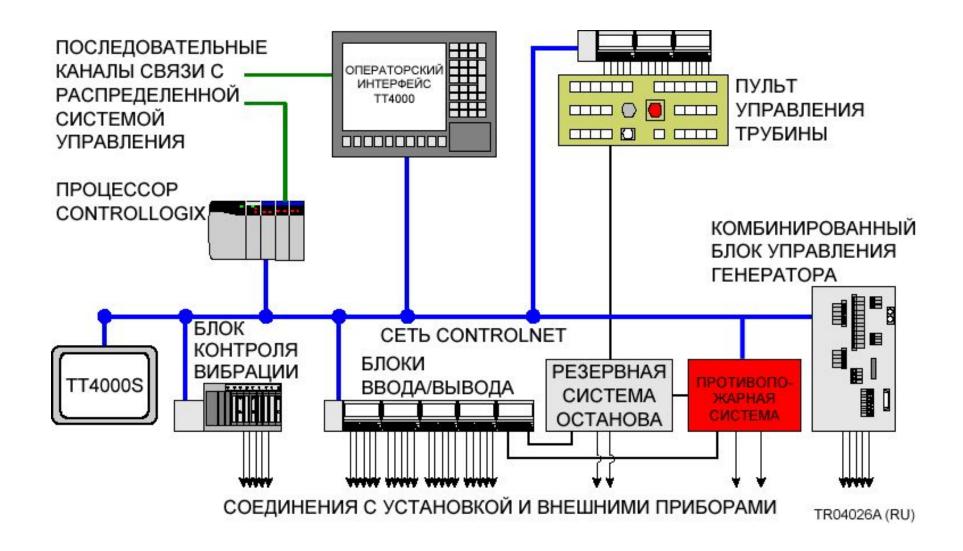
На блоке

Дисплей ТТ4000-S

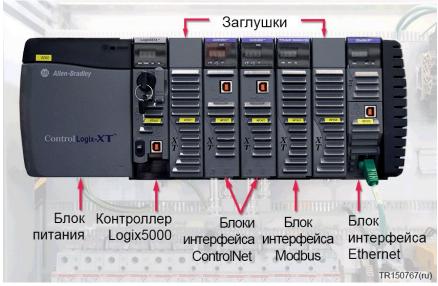

Внешний шкаф управления

- Контроллер
- Блоки ввода/вывода
- Дисплей ТТ4000
- Органы управления операторского интерфейса

За дополнительную плату

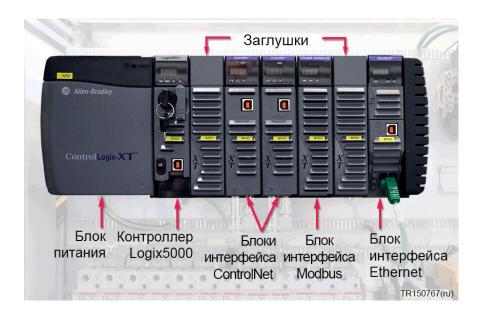

Удаленный ТТ4000

Аппаратура системы управления

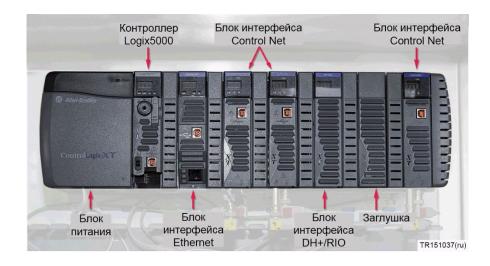

Аппаратура ControlLogix

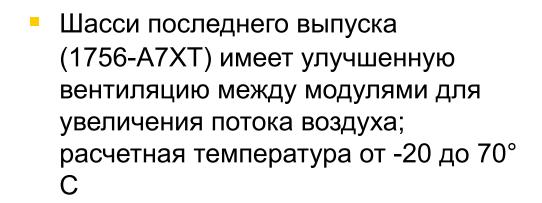
Solar Turbines

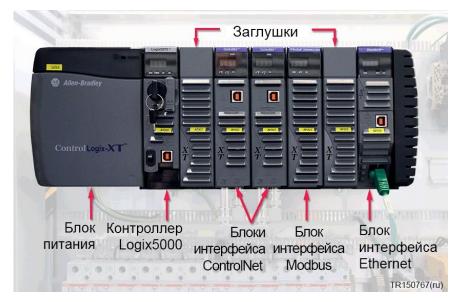
A Caterpillar Company


- Контроллер системы ТТ4 и блоки ввода/вывода ControlLogix модельного ряда аппаратуры ControlLogix
- Rockwell Automation / Allen-Bradley
- Старые установки:
- ControlLogix
 - Рассчитаны на 0 55°С
- Новые установки
- ControlLogix-XT (расширен температурный диапазон)
 - Обычно рассчитаны на температуру от -20 до 70°C >

Шасси ControlLogix (1756)






- Имеют разное число слотов 7 стандарт компании Solar
- Нумерация от 0 6 слева
- Контроллер обычно в слоте 0
- Высокая скорость связи между блоками через объединительную плату >

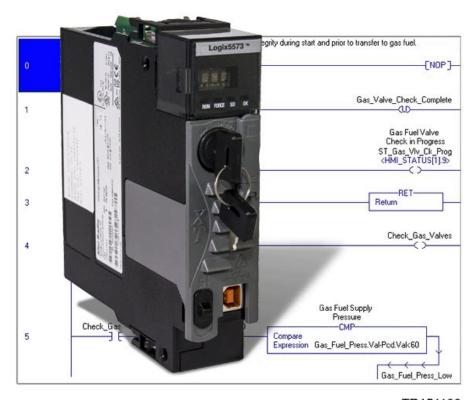
Шасси ControlLogix (1756)

- Имеются также шасси прошлых выпусков 'Low Range XT' (1756-A7LXT); они меньшего размера и рассчитаны на температуру от -20 до 60°С
- Дополнительная тепловая защита обеспечивается установкой блоков через один слот >

Блок питания шасси

Светодиод питания

- Обеспечивает питание блоков:
 - 1,2 В постоянного тока
 - 3,3 В постоянного тока
 - 5 В постоянного тока
 - 24 В постоянного тока
- Напряжение питания:
 - 120/240 В переменного тока или 24 В постоянного тока
- Зеленый светодиод питания


DOWN TO SHARE THE POWER AND TH

TR150768

Тумблерный выключатель (только в традиционных системах ControlLogix) >

Контроллер

TR151130

- Хранит данные
- Исполняет программы
- Вырабатывает решения
- Предложения ЕСЛИ> ТОГДА
- Аккумулятор / блок
 энергонакопителя
 поддерживает память в
 случае отключения питания

>

Контроллер

- В разное время применяли различные контроллеры ControlLogix
- Улучшенная памяти и производительность
- Серия L5
 - Logix5555 (L55)
- Серия L6
 - Logix5561 (L61)
 - Logix5563 (L63)
 - Logix5563XT (L63XT)
- Серия L7
 - Logix5573XT (L73XT)
 - Стандарт в данное время
 - Предложения удвоенную производительность в сравнении с серией L6

Аккумулятор контроллера (серии L5/L6)

- Литиевый аккумулятор сохраняет память при выключенном питании
- Внутренний или внешний
- Красный светодиод 'ВАТ' загорается при 5% зарядки (внутренний) или 50% зарядки (внешний) >

Блок энергонакопителя контроллера (серия L7)

- Контроллеры серии L7 имеют блок энергонакопителя (ESM) для сохранения памяти при отключенном питании
- Съемный блок нап основе конденсаторов
- Подзаряжается после включения питания или после монтажа в контроллере с включенным питанием

Logix5573™

 Исключает необходимость в литиевых аккумуляторах

Связь контроллера

- Серии L5 / L6
 - Последовательный порт RS232
 - Кабель с 9-контактным соединителем D-shell
 - Замедленная связь имеются иные методы
- Серия L7
 - Порт USB >

Светодиоды состояния контроллера (серии L5 / L6)

- ОК в контроллере нет отказов
- RUN программа выполняется
- FORCES имеются принуждения
- I/O все ответы ОК
- BAT низкий заряд аккумулятора
- RS232 мигает во время работы связи >

Светодиоды и дисплей состояния контроллера (серия L7)

- ОК в контроллере нет отказов
- RUN программа выполняется
- FORCES имеются принуждения
- SD карта SD в работе
- Дисплей состояния прокручивает сообщения с информацией о
 - редакции микропрограммы
 - состояние блока энергонакопителя
 - состояние проекта
 - основные отказы контроллера >

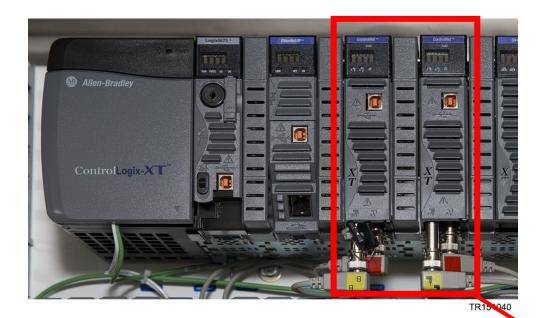
Переключатель под ключ контроллера

- Режимы:
- РАБОТА
 - Штатная работа
 - Исполняется программа
 - Редактирование программного обеспечения невозможно

ПРОГРАММИРОВАНИЕ

- Программа не исполняется
- Выводы выключены
- Редактирование возможно

ДИСТ


- Режим работы или или программирования управляется с помощью терминала программирования
- Возможно ограниченное редактирование программного обеспечения >

TR150772

Блоки связи

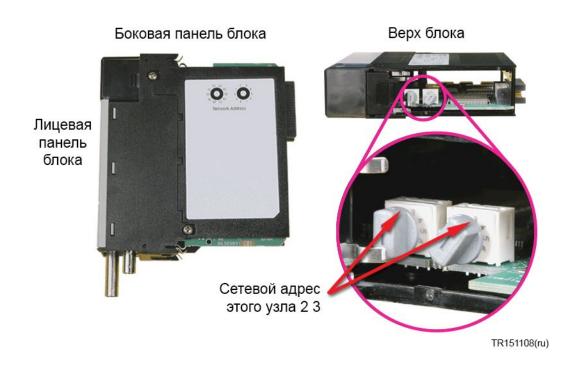
- Имеются различные виды блоков связи
- Сеть ControlNet используется для контроля и управления установкой
- Дополнительные блоки вводят в зависимости от требований к комплектации и и требований клиента

Включают:

- ControlNet
- EtherNet
- Modbus
- DeviceNet
- Data Highway+ >

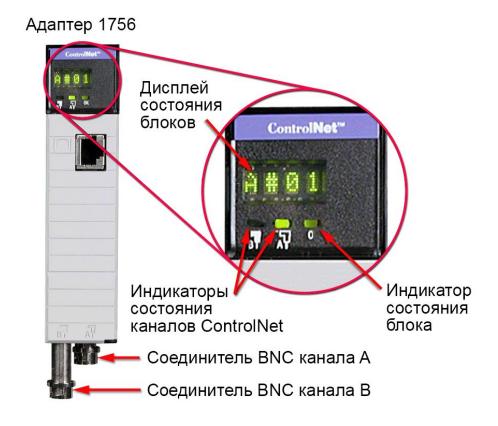
Связь ControlNet - CNBR/CN2R

- Протокол ControlNet 1.5
- Соединение от шасси к узлам Flex I/O
- Используется два блока для повышения скорости связи
- Дублированные каналы A+B
- Коаксиальные соединения
- Старая модель CNBR
 - Порт дRJ-45 для программирующего терминала
- Новая модель CN2R
 - Порт USB для программирующего терминала



TR151039

Адресация узлов CNBR / CN2R



- Узлы CNBR / CN2R/ требуют уникального адреса узла
- Поворотные переключатели наверху
- Обычно узел 01 и 03,однако обязательно сверьтесь с чертежами >

CNBR /CN2R Состояние

- Состояние и диагностическая информация на алфавитноцифровом дисплее
- Светодиод ОК
- Состояние CNet по светодиодам каналов A + B

TR151109(ru

Связь EtherNet/IP

TR151110

Блок за дополнительную плату

- Устанавливается в любой свободный слот
- Служит для соединения системы управления с диспетчерской системой клиента или с терминалом программирования
- Адрес IP
- ENBT заменен на EN2T
- Драйвер устройства EtherNet настроен в RSLinx на адрес IP и маску подсети

Диагностика блока EtherNet

- Алфавитно--цифровой дисплей - включает в себя адрес IP блока
- Светодиод ОК
- Светодиод Net
- Светодиод Link

индикаторы состояния >

Другие блоки связи шасси 1756

- Другие блоки за дополнительную плату:
- Data Highway + / удаленные блоки ввода/вывода
 - Скорее всего, служат для присоединения новой системы ТТ4 к существующим системам ТТ2/3 (DH+)
 - Все ПЛК / контроллеры в одной сети

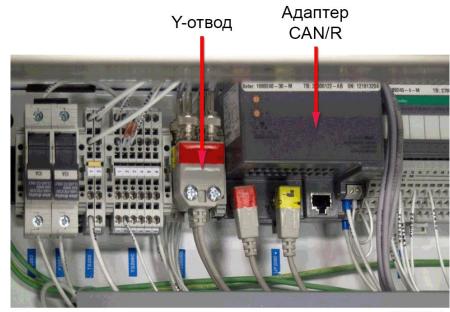
Modbus

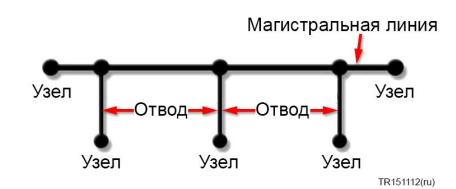
Служит для соединения системы управления ТТ4 с диспетчерской системой клиента (станционная система управления / РСУ)

DeviceNet

Служит для соединения системы управления ТТ4 с промышленными устройствами клиента >

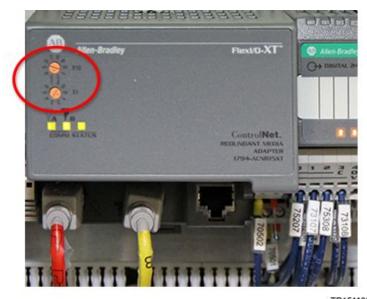
Сеть связи ControlNet – CNBR / CN2R




- Блоки CNBR/CN2R на шасси соединены с блоками ввода/вывода
- Блоки распределены по всей установке
- Название: система Flex I/O >

Сеть ControlNet

TR151041(ru)



- Сеть ControlNet соединяет все устройства системы управления
- Коаксиальные кабели ControlNet от блоков CNBR / CN2R
- соединены с каждым узлом отводами
- Узел обычно состоит из блока связи ACNR порта связи и блоков ввода/вывода
- Y-отводы являются разветвителями для отвода линий к каждому блоку ACNR
 - Иногда используют Т-отводы
- Оконечное соединение требует оконечного резистора 75 Ом

>

Сетевой адрес и особенности узла блока ACNR

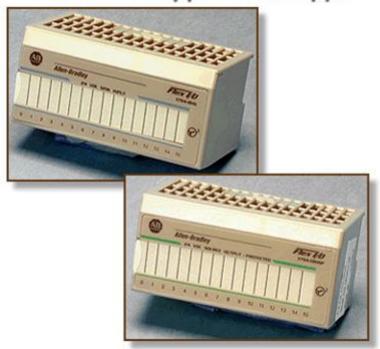
TR15113

Адрес узла станции

- Блоки ACNR в каждом узле требуют уникального адреса
- Старые модели
 - Настроить переключателями на лицевой панели
 - Два знака отображают текущий адрес на дисплее
- Новые модели
 - Настроить поворотными переключателями
- Порт доступа RJ-45 программирующего терминала
- Светодиоды состояния
 - Канал А
 - Канал В
 - Состояние узла

Работа узла Flex I/O

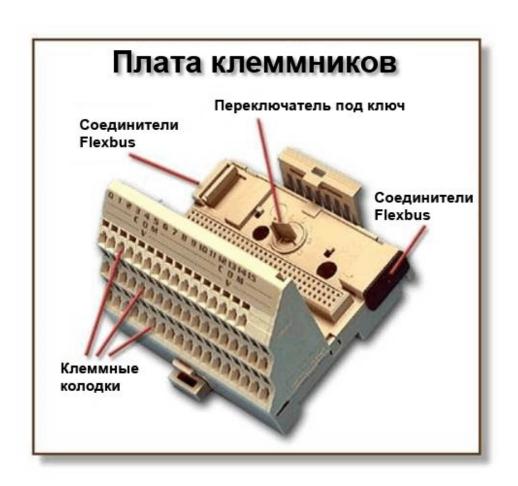
- ACNR блок связи
- Каждый узел имеет до 8 блоков ввода/вывода
- Блоки могут быть в любом сочетании и порядке
- Настройка конфигурации ввода/вывода в программном обеспечении >



TR151134

Блоки ввода/вывода

Блоки ввода и вывода



- Несколько видов для различных сигналов
 - Дискретный ввод
 - Дискретный вывод
 - Аналоговый ввод
 - Аналоговый вывод
 - Ввод частоты вращения
 - Ввод термометров сопротивления/термопар
- Имеются также совмещенные блоки ввода/вывода
- Нумерованные светодиоды могут показывать,
 что канал работает
- На некоторых блоках имеются светодиоды состояния
- Индикация положения переключателя-ключа

Платы клеммников

- Блоки установлены на платах клеммников
- Для разных блоков имеются разные виды
- Соединения Flexbus передают данные в ACNR
- Положение переключателя-колюча соответствует блоку
- Нумерованные клеммы >

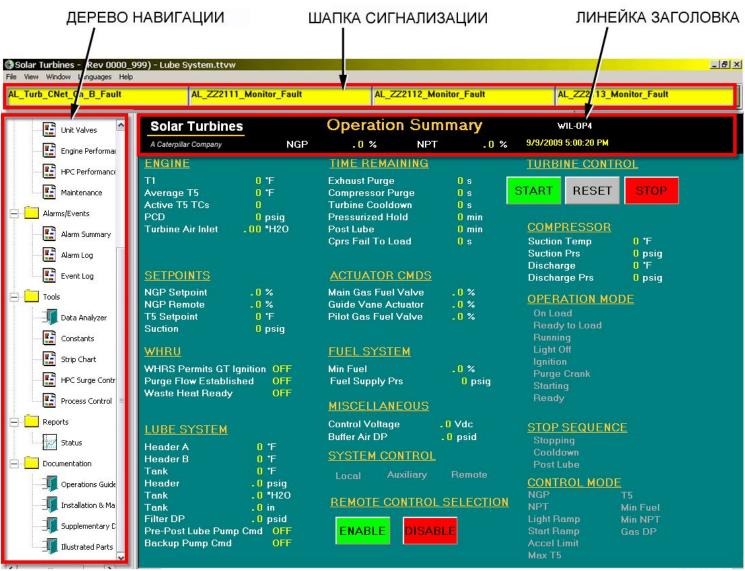
Операторский интерфейс

- Операторский интерфейс =
 - Мониторы дисплея
 - Кнопки Пуск и Стоп
 - Регулирование частоты вращения или нагрузки
 - Кнопки Подтвердить и Сброс
 - Индикаторы
- Операторский интерфейс может быть внешний или на блоке >

Внешние органы управления

- Полностью функциональный шкаф управления
- Дисплей ТТ4000 (полный операторский интерфейс)
- Органы управления и индикаторы.
 - Выключить сирену
 - Подтвердить
 - Сброс
 - Пуск
 - Частота вращения Больше / Меньше
 - Переключатель под ключ Вык/Местное/Вспом
 - Индикатор резервной системы и переключатель под ключ Сброс
 - Кнопка штатного останова
 - Кнопка аварийного останова

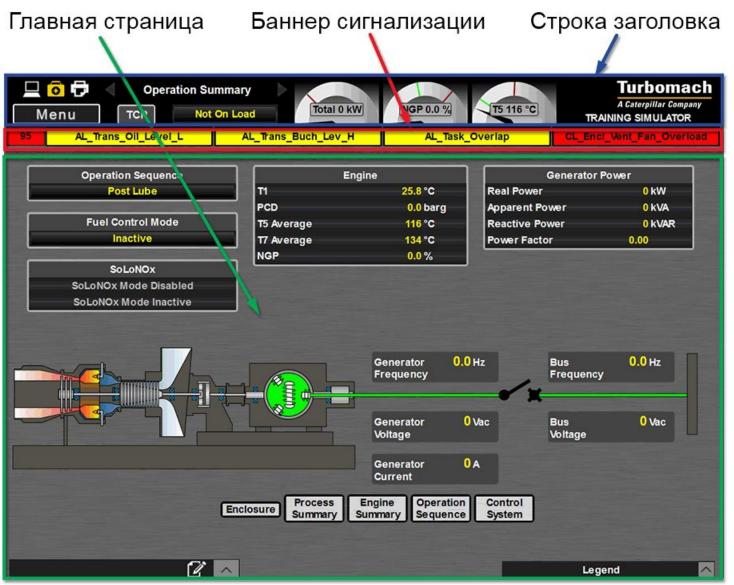
Пульт управления турбины и дисплей TT4000



- Некоторые команды подаются на сенсорном экране ТТ4000
- Всплывающие окна подтверждения для ответственных задач
- Имеются различные версии программного обеспечения дисплея ТТ4000
 - V3.5
 - V4.0
 - V5.0 >

Раскладка дисплея TT4000 V3.5

tr09265 (ru) 53



TR150074

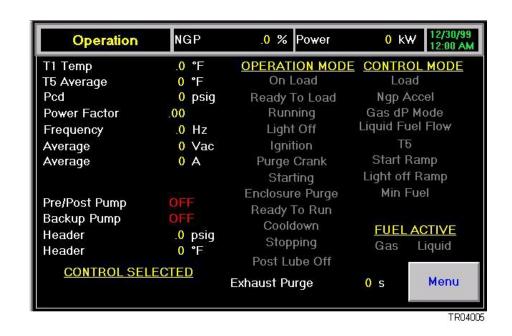
Раскладка дисплея TT4000 V5.0

TR150781(ru) 55

Органы управления на блоке

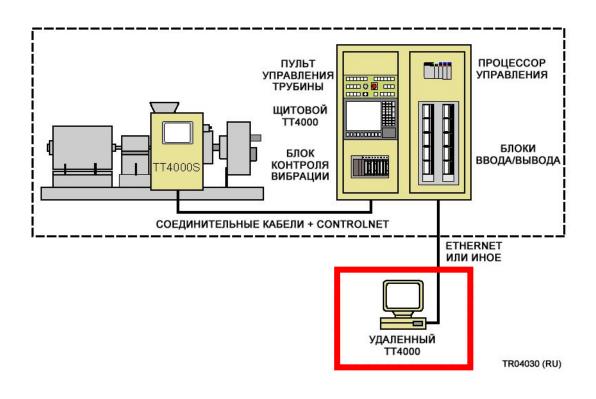
- Распределительный шкаф на блоке
- Дисплей TT4000S (HMI-S)
 представляет собой "цифровую приборную панель" с
 дополнительными возможностями
- Команды запускаются с сенсорного дисплея
- Органы управления и индикаторы также находятся на этой панели >

TT4000S и органы управления



- ТТ4000S предоставляет данные и органы управления
- Имеются органы управления и индикаторы:
 - Выключить сирену
 - Подтвердить
 - Сброс
 - Индикатор и кнопка Пуск
 - Частота вращения Больше / Меньше
 - Переключатель под ключ Вык/Местное/Вспом
 - Индикатор и кнопка Сброс резервной системы
 - Индикатор и кнопка Стоп штатного останова
 - Кнопка аварийного останова

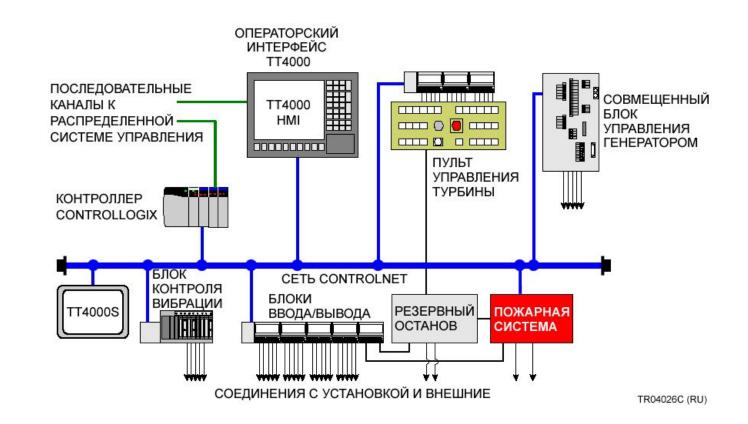
Типичный экран дисплея TT4000S



- Дискретные и аналоговые данные

- Кнопки управления
- Критические функции имеют индикаторы в виде опускных окон подтверждения
- TT4000 V3.5 и V4.0
 - Уменьшенная версия ТТ4000
- TT4000 V5.0
 - Экраны, аналогичные TT4000 >

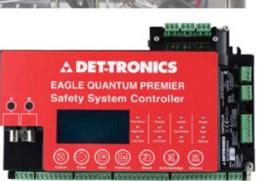
Удаленный ТТ4000



- Удаленный дисплей ТТ4000 обычно выполнен в виде настольного ПК
- Как правило, присоединен через сеть EtherNet или ControlNet к местному TT4000
- Такие же экраны дисплея как у полного ТТ4000
- Может соединяться с несколькими установки (групповой дисплей) >

Прочие устройства в сетиControlNet Network

- Варианты:
- Пожарная система Eagle
 Quantum Premier (EQP)
- Частотно-регулируемые приводы (ЧРП)
- Система контроля вибрации Bently-Nevada 1701
- Система контроля вибрации Allen-Bradley XM


СБУГ >

Прочие устройства в сетиControlNet Network

Резервная релейная система

- Запускает безопасное отключение в аварийной ситуации:
 - 1. Отказ системы управления
 - 2. Ручной экстренный останов
 - 3. Резерв разноса
 - 4. Обнаружение пожара
 - 5. Аварийный останов клиентом
- Реле соединены последовательно
- Заперта до размыкания в случае аварийного события (отказоустойчивая) >

Сброс резерва – Внешний шкаф



TR151042

- Индикатор Включен резерв
- Переключатель с пружинным возвратом служит для сброса резерва >

Сброс резерва – пульт на блоке

- Индикатор Включен резерв
- Также служит кнопкой Сброс резерва

Программирующий терминал

Solar Turbines

A Caterpillar Company

- Служит для загрузки программы в контроллер и для поиска неисправностей
- Можно присоединять через:
- ControlNet
 - Порты RJ45 блоков CNBR или ACNR
- Последовательный порт RS232C
 - Непосредственно к контроллеру серии L5/L6
- USB
 - Непосредственно к контроллеру серии L7
 - Непосредственно к CN2R или EN2T
- EtherNet
 - Кабель с перекрестными соединениями к добавочному блоку EtherNet
- DH+
 - Добавочный блок DH+

Программирующий терминал

Solar Turbines

A Caterpillar Company

- Программирующий терминал требует:
- RSLogix5000
 - Программирующее программное обеспечение
- RSLinx

>

- Драйверы связи
- RSNetWorx
 - Конфигурирует систему ControlNet
- Примечание: Программирующий терминал.
- не требуется в ходе повседневной ксплуатации
- Обычно используется выездным персоналом компании Solar при пуске в эксплуатацию, а также при продвинутом поиске неисправностей

A Caterpillar Company

- 1. Что из приведенного ниже НЕ является одним из четырех главных назначений системы управления?
 - а) Управляет последовательностью работы систем установки
 - b) Обеспечивает контроль и защиту установки
 - с) Обеспечивает визуальное отображение для оператора
 - d) Запускает передачу управления резервному контроллеру в ходе останова

2. Что из приведенного ниже является примерами дискретных или аналоговых сигналов?

а) Сигнализатор давления Дискретный / Аналоговый

b) Датчики уровня Дискретный / Аналоговый

с) Термопара Дискретный / Аналоговый

d) Соленоид Дискретный / Аналоговый

е) Привод Дискретный / Аналоговый

>

- 3. Какие имеются опции протокола связи для установления соединения с контроллером?
 - a) ControlNet
 - b) EtherNet
 - c) Data Highway+
 - d) Последовательный порт RS232C или USB
 - е) Все указанное

- 4. Как сохраняется память контроллера в случае отключения питания?
 - а) Резервное питание переменного тока
 - b) Резервное питание постоянного тока
 - с) Литиевый аккумулятор или блок энергонакопителя
 - d) Флеш память
 - е) Память не сохраняется

5. Каковы три положения переключателя режима на контроллере?

РАБОТА ДИСТАНЦ ПРОГРАММИРОВАНИЕ

б. Каково назначение блоков CNBR / CN2R?

Соединяет ACNR в узлах Flex I/O и любые другие устройства в сети ControlNet с контроллером

- 7. Какому из приведенных ниже устройств необходим адрес узла в системе ControlNet?
 - а) Контроллер Да / Нет
 - b) CNBR / CN2R Да / Нет
 - c) ACNR Да/Нет
 - d) Блок EtherNet Да / Нет

- 8. Какое из следующих устройств НЕ присоединяется к сети ControlNet?
 - а) Пожарная система Eagle Quantum Premier (EQP)
 - b) Частотно-регулируемые приводы (ЧРП)
 - с) Резервная релейная система
 - d) Узлы Flex I/O
 - e) Система контроля вибрации Bently-Nevada 1701
 - f) Совмещенный блок управления генератора (СБУГ)
 - g) Дисплеи ТТ4000 и ТТ4000-S

- 9. Что из приведенного ниже НЕ является одним из событий, вызывающих резервный останов?
 - а) Отказ контроллера
 - b) Останов с остыванием
 - с) Ручной экстренный останов
 - d) Резерв разноса
 - е) Обнаружение пожара
 - f) Аварийный останов клиентом

Задачи - сводка

- 1. Опишите назначение и функции системы управления ТТ4
- 2. Опишите работу основных составных частей системы управления TT4
- 3. Опишите различные конфигурации системы управления и пути связи между составными частями, установленными в различных местах >

Вопросы по Обзору системы управления

Меню курса

Задачи

- 1. Описать, как состояние дискретных и аналоговых устройств можно представить в виде двоичных логических символов
- Назвать различные логические символы, используемые для представления управления последовательностью работы и регулирования турбины
- 3. Продемонстрировать способность ассемблирования логических символов для отображения основных функций последовательности работы и регулирования турбины
- 4. Продемонстрировать способность расшифровки основных функций последовательности работы и регулирования турбины по логической блок-схеме >