
Sharif University of TechnologyDepartment of Computer Engineering 1

Lecture 25
Files

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 2

Outline
• File handling in C - opening and closing.

• Reading from and writing to files.

• How we SHOULD read input from the user.

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 3

Introduction
🡪Data storages of computers

🡪1- Main memory (RAM)
🡪It is volatile
🡪Read / Write data using variables

🡪2-Secondary storage (Hard Disk)
🡪It is not volatile
🡪Read / Write data using files

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 4

🡪 A file is a collection of related data that a computers
treats as a single unit.

🡪When a computer reads a file, it copies the file from
the storage device to memory; when it writes to a
file, it transfers data from memory to the storage
device.

🡪 C uses a structure called FILE (defined in
stdio.h) to store the attributes of a file.

What is a File?

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 5

Text & Binary Files
🡪How does computer store data?

🡪They are coded

🡪When data are stored in main memory
🡪It is variable
🡪Coding is specified by the type: int, char, …

🡪When data are stored in secondary memory
🡪It is file
🡪Coding is specified by the file type: Text & Binary

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 6

Text Files
🡪ASCII encoding

🡪Each line is a string

🡪Each line is terminated by \n

🡪Human-readable files
🡪 Editable by text editor (e.g. Notepad)

🡪Examples
🡪C source files
🡪Every .txt files

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 7

Binary Files
🡪Binary encoding

🡪 int, double, float, struct, … are directly (as 0,1)
stored in the file

🡪Human unreadable files
🡪 Is not editable by text editor

🡪 Needs special editor which understands the file

🡪Examples
🡪.exe files
🡪Media files such as .mp3
🡪Picture files such as .bmp, .jpg

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 8

Working with Files
🡪Until now

🡪We read/write data from/to terminal (console)

🡪In C
🡪We can read data from file

🡪We can write data to file

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 9

Working with Files
🡪Main steps in working with files
🡪1) Open file

🡪Get a file handler from Operating System
🡪2) Read/Write

🡪Use the handler
🡪3) Close file

🡪Free the handler
🡪4) Other operations

🡪Check end of file, …

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 10

Opening Files
🡪Function fopen opens files

#include <stdio.h>

FILE * fopen(char *name, char *mode);

🡪FILE * is struct
🡪Saves information about file.
🡪We don’t need to know about it.

🡪If cannot open file, fopen returns NULL.

🡪name is the name of file:
🡪Absolute name: C:\prog\test.txt

🡪Relative name: Mytest.txt

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 11

Opening Files: Modes
🡪r: open for read. We cannot write to the file.

🡪w: open for write. Create new file. We cannot read
form the file. If file exist, its content will be
destroyed.

🡪a: open for write. We cannot read form the file. If file
exist, its content wont be destroyed. We write at
end of file.

🡪r+, w+, a+ : same to r, w, a but we can read and
write.

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 12

Mode Meaning
fopen Returns if FILE-

Exists Not Exists

r Reading – NULL

w Writing Over write on Existing Create New File

a Append – Create New File

r+
Reading +
Writing

New data is written at the
beginning overwriting
existing data

Create New File

w+
Reading +
Writing

Over write on Existing Create New File

a+
Reading +
Appending

New data is appended at
the end of file

Create New File

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 13

Opening Files: Modes
🡪Files are

🡪Text: Some strings
🡪Binary: Image file, Video file, …

🡪To open binary file, we should add b to the
mode.
🡪rb : open binary file for read
🡪w+b: create new binary file for read and write

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 14

Opening Files: Examples
FILE *fp;

fp = fopen("c:\test.txt", "r");

if(fp == NULL){

printf("Cannot open file\n");

return -1;

}

🡪Open file c:\test.txt for read

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 15

More on fopen

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 16

File-Position pointer(FPP)
🡪File-Position Pointer

🡪A pointer in file
🡪Points to current location of read and write

🡪When file is open
🡪File-Position Pointer is set to start of file

🡪When you read/write from/to file
🡪The File-Position Pointer advance according to the size
of data
🡪If you read 2 bytes, it moves 2 bytes
🡪If you write 50 bytes, it advances 50 bytes

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 17

More on File Open Modes

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 18

Closing Files
🡪Each opened file should be closed.

🡪If we write to a file and don’t close it, some of
data will be LOST

🡪To close the file

fclose(FILE *fp);

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 19

Reading/Writing Text File
🡪fscanf reads from file

🡪fscanf is same to scanf. Return EOF if reached

🡪fprintf writes to file
🡪fprintf is same to printf.

int fscanf(FILE *fp,"format", parameters);

int fprintf(FILE *fp,"format", parameters);

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 20

Text File: Example
🡪We have file in this format

<Number of students>

<id of student 1> <grade of student 1>

<id of student 2> <grade of student 2>

…

<id of student n> <grade of student n>

21

#include <stdio.h>

#include <stdlib.h>

int main(void){

FILE *fpin;

char inname[20];

int num, i, id;

float sum, average, grade;

printf("Enter the name of input file: ");

scanf("%s", inname);

fpin = fopen(inname, "r");

if(fpin == NULL){

printf("Cannot open %s\n", inname);

return -1;

}

برنامه اي كه شماره و نمره
دانشجويان را از فايل بخواند و

میانگین را محاسبه كند.

22

/* Read the number of students */

fscanf(fpin,"%d", &num);

/* Read the id and grade from file */

sum = 0;

for(i = 0; i < num; i++){

fscanf(fpin, "%d %f", &id, &grade);

sum += grade;

}

 average = sum / num;

printf("Average = %f\n", average);

fclose(fpin);

return 0;

}

23

#include <stdio.h>

#include <stdlib.h>

int main(void){

FILE *fpin, *fpout;

char inname[20], outname[20];

int num, i, id;

float sum, average, grade;

printf("Enter the name of input file: ");

scanf("%s", inname);

printf("Enter the name of output file: ");

scanf("%s", outname);

fpin = fopen(inname, "r");

if(fpin == NULL){

printf("Cannot open %s\n", inname);

return -1;

}

را برنامه اي كه شماره و نمره دانشجويان
از فايل بخواند و لیست دانشجوياني كه

نمره آنھا بیشتر از میانگین است را در
فايل ديگري بنويسد.

24

fpout = fopen(outname, "w");

if(fpout == NULL){

printf("Cannot open %s\n", outname);

return -1;

}

/* Read the number of students */

fscanf(fpin,"%d", &num);

/* Read the id and grade from file */

sum = 0;

for(i = 0; i < num; i++){

fscanf(fpin, "%d %f", &id, &grade);

sum += grade;

}

average = sum / num;

25

fclose(fpin);

fpin = fopen(inname, "r");

fscanf(fpin,"%d", &num);

fprintf(fpout, "%f\n", average);

for(i = 0; i < num; i++){

fscanf(fpin, "%d %f", &id, &grade);

if(grade >= average)

fprintf(fpout, "%d: %s\n", id, "passed");

else

fprintf(fpout, "%d: %s\n", id, "failed");

}

fclose(fpin);

fclose(fpout);

return 0;

}

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 26

Reading/Writing Characters (Text Files)
🡪To write a character to file

fputc(char c, FILE *fp)

🡪To read a char from file

char fgetc(FILE *fp);

🡪Returns EOF if reaches to End of File

27

#include <stdio.h>

#include <stdlib.h>

int main(void){

FILE *fpin, *fpout;

char inname[20], outname[20];

char c;

printf("Enter the name of input file: ");

scanf("%s", inname);

printf("Enter the name of output file: ");

scanf("%s", outname);

fpin = fopen(inname, "r");

if(fpin == NULL){

printf("Cannot open %s\n", inname);

return -1;

}

و برنامه اي كه اسم يك فايل ورودي
خروجي را از كاربر بگیرد و فايل
ورودي را در خروجي كپي كند.

28

fpout = fopen(outname, "w");

if(fpout == NULL){

printf("Cannot open %s\n", outname);

return -1;

}

while((c = fgetc(fpin)) != EOF)

fputc(c, fpout);

fclose(fpin);

fclose(fpout);

return 0;

}

29

Checking End of File
🡪 Each file has two indicators

🡪 End of file indicator
🡪 Error indicator

🡪 These indicators are set when we want to read but there is not enough
data or there is an error

🡪 How to use
🡪 Try to read
🡪 If the number of read object is less than expected

🡪 Check end of file 🡪 feof
🡪 Check error of file 🡪 ferror

🡪 feof checks whether the end-of-File indicator associated
with stream is set and returns a value different from zero if it
is.

30

Checking End of File
🡪 Previous example with feof

while(1){
c = fgetc(fpin);
if(feof(fpin))

break;
fputc(c, fpout);
}

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 31

#include <stdio.h>
int main () {

FILE * pFile;
int n = 0;
pFile = fopen ("ss.txt","r");
while (fgetc(pFile) != EOF) {

++n;
}
if (feof(pFile)) {

puts ("End-of-File reached.");
printf ("Total number of bytes read: %d\n", n);

}
fclose (pFile);
return 0;

}

feof example: byte counter

32

Read/Write a Line (Text File)
🡪 We can read a line of file

char * fgets(char *buff, int
maxnumber , FILE *fp);

🡪 Read at most maxnumber-1 chars

🡪 Reading stops after EOF or \n, if a \n is read it is
stored in buffer

🡪 Add ‘\0’ to the end of string

🡪 If reach to end of file without reading any
character, return NULL

33

Read/Write a Line (Text File)
🡪 We can write a line to file

int fputs(char *buff, FILE *fp);

🡪 Write the string buff to file

🡪 Does NOT add \n at the end

34

Example: Count the number of lines
char buf[500]; // 500 > every line

fpin = fopen(inname, "r");

if(fpin == NULL){

printf("Cannot open %s\n", inname);

return -1;

}

while(fgets(buf, 499, fpin) != NULL)

count++;

printf("Number of Lines = %d\n", count);

35

#include <stdio.h>

#include <stdlib.h>

int main(void){

FILE *fpin, *fpout;

char inname[20], outname[20];

char buf[1000];

printf("Enter the name of input file: ");

scanf("%s", inname);

printf("Enter the name of output file: ");

scanf("%s", outname);

fpin = fopen(inname, "r");

if(fpin == NULL){

printf("Cannot open %s\n", inname);

return -1;

}

و برنامه اي كه اسم يك فايل ورودي
خروجي را از كاربر بگیرد و فايل
ورودي را در خروجي كپي كند.

36

fpout = fopen(outname, "w");

if(fpout == NULL){

printf("Cannot open %s\n", outname);

return -1;

}

while(fgets(buf, 1000, fpin) != NULL)

fputs(fpout, buf);

fclose(fpin);

fclose(fpout);

return 0;

}

37

File 1:

3 30

1 2 3 4 5 6 7

12 34 56 78 90

123 456

File 2:

654 321

09 87 65 43 21

7 6 5 4 3 2 1

تابعي كه اطلاعات دو فايل را بگیرد
و فايل اول را به صورت برعكس در

فايل دوم بنويسید.

تعداد خط ھا و حداكثر طول ھر خط
فايل اول مشخص شده است.

38

void reverse_copy(FILE *fpin, FILE *fpout){

 int lines, max_len, i = 0, j;

 fscanf(fpin, "%d %d\n", &lines, &max_len);

 char arr[lines * max_len];

 do{

 char c = fgetc(fpin);

 if(feof(fpin))

 break;

 arr[i++] = c;

 }while(1);

 for(j = i - 1; j > -1; j--)

 fputc(arr[j], fpout);

}

39

Binary Files: A Different File Format
🡪 Data in binary files are
🡪 Not encoded in ASCII format
🡪 Encoded in binary format

🡪 We must use different functions to
read/write from/to binary files

🡪 Why?

🡪 Because, data should not be converted to/from
ASCII encoding in writing/reading the files

No Conversion to ASCII
🡪 In text files, everything is saved as ASCII

codes

🡪 In binary files, there is not any binary to text
conversion, everything is read/write in binary
format

40

41

Reading from Binary Files
int fread(void *buf, int size, int num,
FILE *fp)

🡪 Reads num objects from file fp to buf.
Size of each object is size. Returns the
number of read objects.

🡪 If (return val < num)
🡪 There is an error
🡪 Or EOF 🡪 Check with feof

42

Writing to Binary Files
int fwrite(void *buf, int size, int num,
FILE *fp)

🡪 Writes num objects from buf to fp. Size
of each object is size. Returns the
number of written objects.

🡪 If (return val < num)
🡪 There is an error

43

fread: Examples
🡪 Reading 1 int from binary file fp
int i;

fread(&i, sizeof(int), 1, fp);

🡪 This means
🡪 Read 1 object from file fp. Save result in &i. The

size of the object is sizeof(int)

🡪 It reads 4 bytes from file and saves in &i
🡪 We read an integer from file and save it in i

44

fread: Examples
🡪 Read five floats
float farr[5];

fread(farr, sizeof(float), 5, fp);

🡪 This means
🡪 Read 5 objects from file fp. Save result in farr.

The size of each object is sizeof(float)

🡪 It reads 20 bytes from file and saves in farr
🡪 We read 5 floats from file and save them in farr

45

fwrite: Examples
🡪 Writing 1 char to binary file fp
char c = 'A';

fwrite(&c, sizeof(char), 1, fp);

🡪 This means
🡪 Write 1 object from &c into file fp. Size of the

object is sizeof(char)

🡪 It writes 1 byte from address &c and saves
result in file
🡪 We write char c to the file

46

fwrite: Examples
🡪 Writing 4 doubles to binary file fp
double darr[4];

fwrite(darr, sizeof(double),4,fp);

🡪 This means
🡪 Write 4 object from darr into file fp. Size of the

object is sizeof(double)

🡪 It writes 32 bytes from address darr and
saves result in file
🡪 We write the array of double to the file

47

#include <stdio.h>

struct point{

int x, y;

};

int main(void){

FILE *fp;

struct point p;

int i;

fp = fopen("c:\\point.bin", "wb");

if(fp == NULL){

printf("Cannot create file\n");

return -1;

}

for(i = 0; i < 5; i++){

printf("Enter X and Y: ");

scanf("%d %d", &p.x, &p.y);

fwrite(&p, sizeof(p), 1, fp);

}

fclose(fp);

return 0;

}

كاربر برنامھ اي كھ x و y 5 نقطھ را از
مي گیرد و آنھا را در یك فایل باینري

ذخیره مي كند.

48

#include <stdio.h>
struct point{

int x, y;
};
int main(void){

FILE *fp;
struct point p;
int i;
fp = fopen("point.bin", "rb");
if(fp == NULL){
printf("Cannot read from file\n");
return -1;
}
while(1){
if(fread(&p, sizeof(p), 1, fp) < 1)

break;
printf("X = %d, and Y = %d\n", p.x, p.y);
}
fclose(fp);
return 0;

}

با برنامھ اي كھ اطلاعات نقطھ ھاي كھ
مثال قبلي در فایل ذخیره شده است را

خوانده و نمایش مي دھد.

49

Sequential and Random Accesses
🡪 The access to file is sequential if
🡪 If we don’t move the FPP manually
🡪 FPP advances through read and write

🡪 File processing can uses Random access
🡪 We can also move the FPP manually

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 50

50

Random Access Files
• Random access files

– Access individual records without searching through other records

– Instant access to records in a file

– Data can be inserted without destroying other data

– Data previously stored can be updated or deleted without
overwriting

• Implemented using fixed length records
– Sequential files do not have fixed length records

0 20
0

30
0

40
0

50
0

byte
offsets
}

} } } } } }

10
0

100
byte

s

100
byte

s

100
byte

s

100
byte

s

100
byte

s

100
byte

s

51

Moving FPP, Why?
🡪 To access randomly

🡪 Consider very large file (information about all
students in the university)

🡪 Change the name of 5000th student
🡪 If it is saved in text file
🡪 Read 4999 lines, skip them and change the 5000th

🡪 If it is saved in binary file and each object has the
same size
🡪 Jump to the 5000th object by fseek

52

Moving FPP
int fseek(FILE *fp, long offset, int
org)

🡪 Set FPP in the offset respect to org

🡪 org:
🡪 SEEK_SET: start of file
🡪 SEEK_CUR: current FPP
🡪 SEEK_END: End of file

🡪 Returns nonzero if it is unsuccessful

53

fp = fopen("point.bin", "rb");

fread(&p, sizeof(p), 1, fp);

printf("%d %d\n", p.x, p.y);

fseek(fp, 2 * sizeof(p), SEEK_SET);

fread(&p, sizeof(p), 1, fp);

printf("%d %d\n", p.x, p.y);

fseek(fp, -3 * sizeof(p), SEEK_END);

fread(&p, sizeof(p), 1,fp);

printf("%d %d\n", p.x, p.y);

fseek(fp, 1 * sizeof(p), SEEK_CUR);

fread(&p, sizeof(p), 1, fp);

printf("%d %d\n", p.x, p.y);

فرض كنید در یك فایل باینري
اطلاعات نقاط زیر بھ ترتیب

نوشتھ شده است.
(5,5)(4,4)(3,3)(2,2)(1,1) 1 1

 3 3

 3 3

 5 5

54

Other FPP related functions
🡪 Find out where is the FPP

int ftell(FILE *fp)

🡪 ftell returns the current FPP
🡪 With respect to SEEK_SET

🡪 Reset the FPP to the start of file

void rewind(FILE *fp)

55

#include <stdio.h>

struct point{

int x, y;

};

int main(void){

FILE *fp;

struct point p;

int num;

fp = fopen("point.bin", "rb+");

if(fp == NULL){

printf("Cannot read from file\n");

return -1;

}

printf("Enter the number of points: ");

scanf("%d", &num);

printf("Enter new X and Y: ");

scanf("%d %d", &(p.x), &(p.y));

fseek(fp, (num – 1) * sizeof(p) , SEEK_SET);

fwrite(&p, sizeof(p), 1, fp);

fclose(fp);

return 0;

}

X برنامه اي كه شماره يك نقطه و
وY جديد را از كاربر مي گيرد و
مختصات نقطه تعيين شده را در

فايل عوض مي كند

56

fseek in Text files
🡪 Not very useful

🡪 Offset counts the number of
characters including ‘\n’

🡪 Typical useful versions
🡪 fseek(fp, 0, SEEK_SET)
🡪 Go to the start of file

🡪 fseek(fp, 0, SEEK_END)
🡪 Go to the end of file

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 57

🡪 fopen - open a file- specify how its opened (read/write)
and type (binary/text)

🡪 fclose - close an opened file
🡪 fscanf- read from a file
🡪 fprintf – write to a file
🡪 fread - read from a file
🡪 fwrite - write to a file
🡪 fseek/fsetpos - move a file pointer to somewhere in a

file.
🡪 ftell/fgetpos - tell you where the file pointer is located.
🡪 fgetc/fputc- read and write a char

The basic file operations are

58

Common Bugs and Avoiding Them
🡪 Take care about mode in fopen
🡪 w & w+: all data in file will be lost
🡪 r: you cannot write. fprintf does not do any thing

🡪 Take care about text or binary
🡪 fscanf/fprintf don’t do meaningful job in binary files

🡪 Check the successful open: fp != NULL

🡪 Check EOF as much as possible.

🡪 Close the open files.

