
Аминокислоты

Аминокислоты — это бифункциональные органические соединения, в молекулах которых содержатся карбоксильная группа СООН и аминогруппа $_{2}^{NH}$, связанные углеводородным радикалом $_{3}^{NH}$

NH₂ – CH - COOH | | |

Производные карбоновых кислот, у которых атом Н в радикале замещен на аминогруппу

СН₃СООН уксусная кислота

Н-СН-СООН аминоуксусная кислота (глицин)

протеиногенные аминокислоты

Протеиногенными называются 20 аминокислот, которые кодируются генетическим кодом и включаются в белки в процессе трансляции

Некоторые из протеиногенных аминокислот не могут синтезироваться в организме человека и должны поступать вместе с пищей. Эти незаменимые аминокислоты отмечены звездочками красного цвета

Тривиальные названия	Сокращённые названия						
аминокислот	русские	латинские		Строение радикалов			
I. Аминокислоты с алифатическими радикалами							
1. Глицин	Гли	Gly	G	-н			
2. Аланин	Ала	Ala	Α	-CH₃			
3. Валин	Вал	Val	V	-CH <ch₃< td=""></ch₃<>			
4. Лейцин	Лей	Leu	L	-CH₂-CH < CH₃ CH₃			
5. Изолейцин	Иле	Ile	I	-CH-CH₂-CH₃ CH₃			
ІІ. Аминокислоты, содержащие в алифатическом радикале дополнительную функциональную группу							
6. Серин	Сер	Ser	S	-CH ₂ -OH			
7. Треонин	Tpe	Thr	T	-CHOH-CH ₃			
	Карбоксили						
8. Аспарагиновая кислота	Асп	Asp	D	-CH ₂ -COOH			
9. Глутаминовая кислота	Глу	Glu	E	-CH ₂ -CH ₂ -COOH			
•	Амидную группу						
10. Аспарагин	Асн	Asn	N	-CH ₂ -CO-NH ₂			
11. Глутамин	Глн	Gln	Q	-CH ₂ -CH ₂ -CO-NH ₂			
14	Аминогруппу						
12. Лизин →	Лиз	Lys	Κ .	-(CH ₂) ₄ -NH ₂			
	Гуанидино						
13. Аргинин	Арг	Arg	R	-(CH ₂) ₃ -NH-C-NH ₂ NH			
14 Пуюточу			C	All Market and Assessment			
14. Цистеин 15. Метионин	Цис Мет	Cys Met	M	-CH ₂ -SH -CH ₂ -CH ₂ -S-CH ₃			

III. Аминокислоты, содержащие ароматический радикал							
16. Фенилаланин	Фен	Phe	F	-CH ₂ -			
17. Тирозин	Тир	Tyr	Y	-CH₂-CH			
IV. Аминокислоты с гетероциклическими радикалами							
18. Триптофан	Три	Trp	W	-CH ₂ -			
				H			
19. Гистидин	Гис	His	Н	-CH ₂ -r==¬ HN ✓N			
V. Иминокислота							
20. Пролин	Про	Pro	P	□-соон			
				N Н Дана полная			
				формула			

Химические свойства аминокислот

Аминокислоты – амфотерные вещества

Как кислоты реагируют:

а) с основаниями

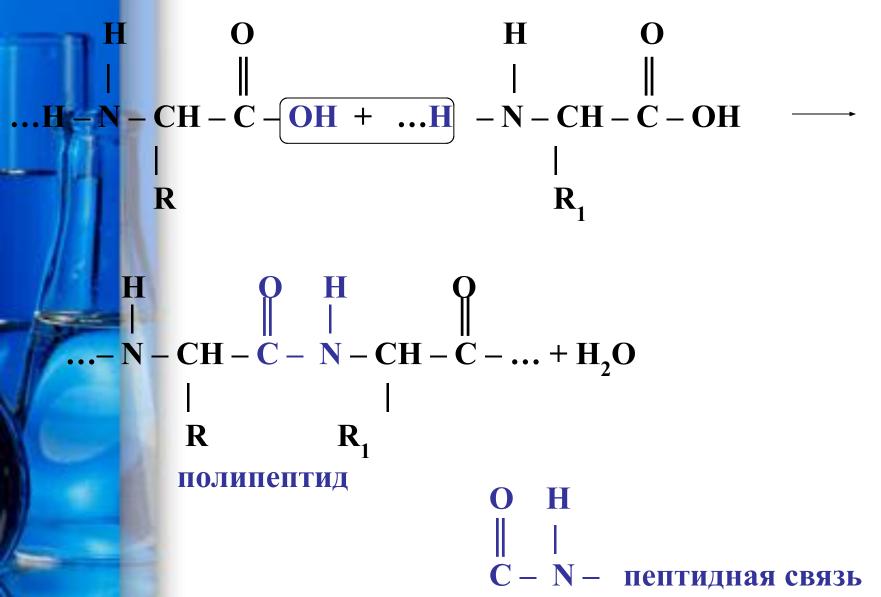
 NH_2 -CH-COOH + NaOH $\rightarrow NH_2$ -CH-COONa + H_2 O

R

R

натриевая соль

аминокислоты


б) со спиртами (этерификация)

Как основания реагируют:

а) с кислотами

хлорид аминокислоты (соль)

Реакция поликонденсации

применение аминокислот

- Аминокислоты широко используются в современной фармакологии.
- Некоторые из них выступают в качестве нейромедиаторных веществ.
- Некоторые аминокислоты нашли самостоятельное применение в качестве лекарственных средств (глицин)
- Аминокислоты применяются в животноводстве и ветеринарии для питания и лечения животных.
- А также в микробиологической, медицинской и пищевой промышленности.

«Жизнь – это способ существования белковых тел» Ф. Энгельс

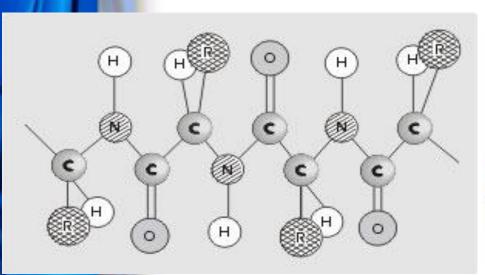
Белки

белки представляют собой высокомолекулярные органические соединения, построенные из остатков α-аминокислот, соединенных между собой пептидными связями.

Значение белков

все биологические катализаторы — ферменты по своей химической природе являются белками.

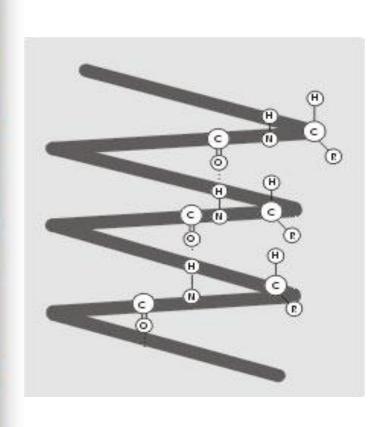
белок гемоглобин транспортирует кислород, ряд других белков образуя комплекс с липидами транспортируют их по крови и лимфе (пример: миоглобин, сывороточный альбумин).

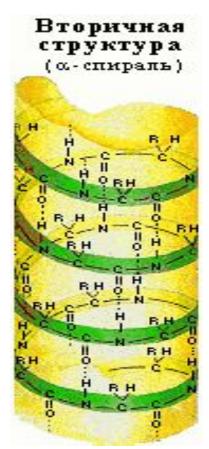

мышечная работа и иные формы движения в организме осуществляются при непосредственном участии сократительных белков с использованием энергии макроэргических связей

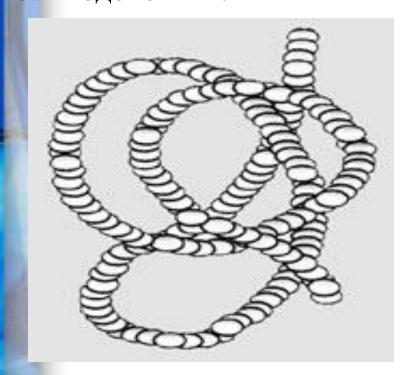

- ряд гормонов и других биологически активных веществ имеют белковую природу (пр.: инсулин, АКТГ).
- антитела (иммуноглобулины) являются белками
 - основу кожи составляет белок коллаген, а волос креатин. Кожа и волосы защищают внутреннюю среду организма от внешних воздействий.

Структура белка

ервичная структура белка -

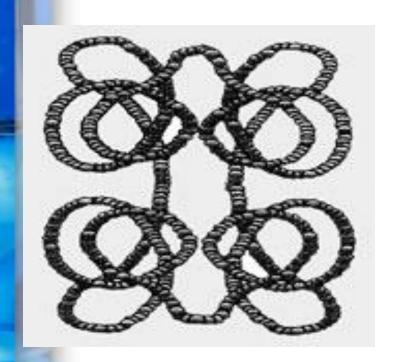

специфическая аминокислотная последовательность, т.е. порядок чередования α- аминокислотных остатков в полипептидной цепи.




Вторичная структура белка -

конформация полипептидной цепи, т.е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и CO. Одна из моделей вторичной структуры — α- спираль.

Третичная структура белка - форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.



Четвертичная структура белка –

агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных

полипептидных цепей

Денатурация белков

Утрата белком природной конформации, сопровождающаяся обычно потерей его биологической функции, называется денатурацией.

С точки зрения структуры белка — это разрушение вторичной и третичной структур белка без повреждения его первичной структуры, в результате белок теряет растворимость и утрачивает биологическую активность.

Денатурация может быть вызвана: повышением температуры, действием сильных кислот и щелочей, солей тяжелых металлов, некоторых растворителей (спирт), радиации и др.

Гидролиз белков — разрушение первичной структуры белка под действием кислот, щелочей или ферментов, приводящее к образованию а- аминокислот, из которых он был составлен.

Цветные реакции на белки

Биуретовая реакция (реакция на наличие **пептидной связи** в беках и олигопептидах) **Реагент:** гидроксид меди (II) Сиреневая окраска

Нингидриновая реакция (реакция на наличие α-аминогрупп в свободных аминокислотах, а также в аминокислотных остатках олигопептидов и белков) Реагент: нингидрин

Красно-фиолетовая окраска

Ксантопротеиновая реакция (реакция определяется наличием в белках ароматических аминокислотах). Реагент: азотная кислота Ярко-желтый осадок

Реакция Фоля (реакция на наличие в составе белков серосодержащей аминокислоты цистеина).

Реагент: ацетат свинца

Черный осадок