MAN ATABATÉTAPITA ANCEL

Цель работы

Изучить удивительные особенности чисел с последующим созданием презентации для использования на уроках математики

Оглавление

Введение

Основная часть

Историческая справка

Натуральные числа

Простые, составные

Неразгаданная тайна простых чисел

Сверхсоставные числа

Числа-близнецы

Дружественные числа

Совершенные числа.

Хорошие числа. Числа самородки.

Симметричные числа.

Заключение

Литература

Задачи

- 1. Собрать и изучить материал 2. Найти удивительное в ряде чисел
- 3. Открыть какие-либо закономерности и свойства в ряду чисел
- 4. Обобщить полученные данные и сформулировать вывод

Актуальность

- •Когда я нашла в учебнике сведения о простых числах, совершенных числах, на форзаце учебника увидела таблицу простых чисел, то поняла, что авторы учебника придают натуральным числам большое значение и значит эта тема актуальна. И действительно, простые числа, составные числа, взаимно простые числа и ряд других чисел является как бы «кирпичиками» из которых «строятся» остальные натуральные числа
- •В настоящее время материал более наглядно можно представить с помощью компьютера, то решила применить ИКТ

Новизна исследования

Применение компьютера для нахождения простых чисел, применение эффекта анимации для показа определённой группы чисел

Объект исследования

натуральные числа

Предмет исследования

нахождение простых чисел, составных чисел, совершенных чисел

Практическое

использование

На уроках математики при изучении тем: «разложение чисел на множители», «приведение дробей к общему знаменателю»

Созданная, красочно оформленная таблица, поможет другим учащимся разобраться в нахождении простых чисел

Гипотеза

- •Освоение методов нахождения простых, составных, совершенных и других чисел
- Можно ли найти самое большое
 простое число, совершенное число симметричное число и другие виды чисел

Для решения проблемы

- 1. Прочитала и выписала интересующий меня материал из учебника математики 6 класса под редакцией Н. Я. Виленкина.
- 2. Использовала «Толковый словарь» В. Даля и книгу для учащихся «Я познаю мир».
- 3. Изучила учебную литературу для старших классов: Глейзер Г. И. «История математики в школе»., «Математическая энциклопедия», Босова Л.Л. Информатика: учебник 6 класса, глава «Материал для любознательных», «Занимательная наука», алгебра 9 класс.

Натуральные числа

Термин «натуральное число» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах говорил о натуральном, то есть природном ряде чисел.

Простые и составные числа

- •Натуральное число называется **простым**, если оно имеет только два делителя: единицу и само это число.
- •Натуральное число называют **составным**, если оно имеет более двух делителей.
- •Число 1 имеет только один делитель: само число. Поэтому его не относят ни к составным, ни к простым числам.
- •Первыми десятью простыми числами являются: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
- •Любое составное число можно разложить на два множителя, каждый из которых больше 1. Простое число так разложить на множители нельзя.
- •Произведение двух простых чисел может быть простым число,

Решето Эрастофена

В таблицу вписываем все числа от 1 до 100 (1 не включается: она не является простым числом). Вычеркиваем все четные числа, кроме 2. Затем вычеркиваем все числа, делящиеся на 3, кроме 3. Числа, делящиеся на 4, уже вычеркнуты, поэтому переходим к 5, затем к 7. Все оставшиеся числа (желтые клетки) – простые

Решето Эрастофена

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Простые числа

Простые числа называют кирпичами в построении математики, так как все остальные числа можно сформировать, перемножая простые.

Например,

$$55 = 5 \times 11$$

$$75 = 3 \times 5 \times 5$$

$$39 = 3 \times 13$$

$$65 = 5 \times 13$$

$$221 = 13 \times 17$$

73 939 133 — удивительное простое число. Можно удалить с его конца любое число цифр, и оставшееся число тоже будет простым. Это наибольшее известное число, обладающее таким свойством.

Сверхсоставные числа

Сверхсоставным числом будем называть натуральное число, которое имеет больше делителей, чем каждый из больших его натуральных чисел.

Число 1 имеет ровно один делитель.

Числа 2 и 3 имеют ровно по два делителя, так как они простые.

Число 4 имеет три делителя.

Число 6 имеет четыре делителя: 1, 2, 3 и 6.

Сверхсоставные числа

- 16 число с пятью делителями. Его делители 1, 2,4,8 и 16.
- У числа 12 **шесть делителей**: 1, 2, 3, 4, 6 и 12.
- Число 16 не сверхсоставное, им стало число 12.
- Следующее число, являющееся сверхсоставным число 30 с восемью делителями.
- 36, 40, 54, 56 все с восемью делителями,
- 48 с десятью делителями,
- число 60 имеет двенадцать делителей
- число 64 имеет ровно семь делителей
- числа 36, 40, 48, 54, 56 и 60 являются свехсоставными числами.

Взаимно простые числа

•Натуральные числа, называют взаимно простыми, если их наибольший общий делитель равен 1.

Числа близнецы

это простые числа, отличающиеся друг от друга на 2.

В первом десятке простых чисел такими парами будут 3 и 5, 5 и 7, 11 и 13, 17 и 19 Проблема «близнецов» относится к числу нерешенных до сих пор задач. Неизвестно, оборвется ли когда-нибудь

Неизвестно, оборвется ли когда-нибудь этот список или же он бесконечен, как и ряд простых чисел.

Дружественные числа

- •Пара натуральных чисел, каждое из которых равно сумме собственных делителей другого, то есть делителей, отличных от самого числа.
- •Определение дружественных чисел есть уже в «Началах» Евклида, в трудах Платона. Древним грекам была известна одна пара таких чисел: 220 и 284, суммы их делителей соответственно равны:
- $^{\circ}$ 1+2+4+5+10+11+20+22+44+55+110 = 284

Дружественные числа

Долго считалось, что следующую пару дружественных чисел 17296 и 18416 открыл в 1636 году знаменитый французский математик Пьер Ферма (1601 -1665). Но в одном из трактатов арабского ученого Ибн аль-Банны (1256 – 1321) были найдены строки: «Числа 17296 18416 являются дружественными. Аллах всеведущ».

Дружественные числа

- •Французский математик и философ Рене Декарт (1596 1650) в 1638 году нашел следующую пару дружественных чисел: 9363584 и 9437056.
- •После Декарта получил новые дружественные числа Леонард Эйлер (1707 1783). Он открыл 59 пар дружественных чисел, среди которых были и нечетные числа.
- •В настоящее время известно 1100 пар дружественных чисел, найденных либо хитроумными способами, либо перебором на компьютере.
- •На долю компьютера в этом списке досталось совсем немного чисел большинство из них было открыто математиками «вручную».
- •Однако неизвестно, существует ли пара чисел, одно из которых

Хорошие числа

- •Натуральное число будем называть хорошим, если оно делится на сумму цифр самого числа.
- •По определению хороших чисел все цифры от 1 до 9 являются хорошими числами. Самое меньшее двузначное число **10**, так как оно делится на число, равное (1 + 0).
- •Следующим числом является **12**, т.к. 12 делится на 1 + 2, как уже мы доказали это же число является и сверхсоставным.
- 13 не хорошее число, т. к. 13 не делится на (1+3);
- •14 не хорошее число, т. к. 14 не делится на (1+ 4);
- 15 не хорошее число, т. к. 15 не делится на (1+ 5);
- •16 не хорошее число, т. к. 16 не делится на (1+ 6);
- 17 не хорошее число, т. к. 17 не делится на (1+ 7);

Совершенные числа

- •Совершенным числом называют натуральное число, которое равно сумме делителей этого числа, меньших самого числа.
- •Пифагор (VI в до н.э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа), они называли совершенным числом. Например,
- **6 = 1 + 2 +3**, где числа 1, 2 и 3 являются делителями числа 6.
- **28 = 1+ 2 + 4+7 +14**, где числа 1, 2, 4, 7 и 14 делители числа 28.

Следующие совершенные числа -

- **496 = 1+ 2 +4 + 8 + 16 + 31 + 62 + 124 + 248**, где числа 1, 2, 4, 8, 16, 31, 62, 124 и 248 являются делителями числа 496
 - •Пифагорейцы знали только первые три совершенных чисел. Четвертое совершенное число 8128 стало известно в 1 веке нашей эры. Пятое 33550336 было найдено в XV веке нашей

Совершенные числа

- •К 1983 году было известно уже 27 совершенных чисел и все найденные совершенные числа являются четными числами.
- •Первые 23 из этих чисел соответствуют значениям m: 2,3,5, 7,13,17,19,31,61, 89,107,127,521,607,1279,2203,2281,3271,4219 ,4423,9689,9941,11213,. Но до сих пор ученые не знают, есть ли нечетные совершенные числа, есть ли самое большое совершенное

Числа самородки

Возьмем числа 5, 10, 11, 13, 17, 25,.... Все числа, кроме 5, сформированы по единому правилу. К числу прибавляется сумма его цифр.

- •Так, 5+5=10, 10+1=11, 11+2=13, 13+4=17,... Все начинается с числа 5. Число 5 оказалось как бы самородком.
- •Однозначные самородки: 1, 3, 5, 7 и 9.
- •Из двухзначных наименьшее 20, затем 31,... Есть коллекция «самородков» и среди многозначных чисел.

Симметричные числа

- Число называется симметричным, если существует прямая (или центр симметрии), переводящее это число в себя.
- •Если рассмотреть все десять цифр: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, то можно заметить:
- •Цифра 8 имеет только вертикальную ось симметрии и является симметричным числом относительно этой вертикальной оси (прямой). Цифра 0 имеет две оси симметрии, вертикальную и горизонтальную и один центр симметрии (этот центр точка пересечения вертикальной и горизонтальной осей симметрии).

Выводы

- 1. Изучению удивительных особенностей чисел нет конца.
- 2. Исследован ряд чисел, обладающих любопытными особенностями.
- 3. Рассмотрены простые и составные числа, сверхсоставные числа, совершенные числа и хорошие числа, числа-близнецы, дружественные числа, особенные числа, симметричные числа.
- 4. В ходе изучения данной темы удалось углубленно изучить школьные темы.
- 5. Познакомились с особенными двузначными числами, у которых произведение двузначных чисел не меняет своей величины, если переставить их цифры.
- 6. К удивительным числам относятся симметричные числа.
- 7. Гипотеза оказалась верна, указать самое большое простое число, составное, совершенное, симметричное невозможно.

Выводы

- •Древнегреческий математик Евклид (III в. до н.э.) в своей книге «Начала» доказал, что простых чисел бесконечно много, то есть за каждым простым числом есть ещё большее простое число.
- •Новое к удивительным числам эти хорошие и симметричные числа, числа-самородки.
- •Здесь останавливается движение по натуральному ряду. Не слишком ли много внимания уделено начальным шагам в математику? Ответом на это мог бы послужить известный афоризм немецкого математика Леопольда Кронекера (1823-1891): "Бог создал натуральные числа, все остальное дело

Литература

- •1. Учебник Математики 6 класса под редакцией Н. Я. Виленкина
- •2. Книги для учащихся «Я познаю мир»
- •3. Глейзер Г. И. «История математики в школе», М: Просвещение,1982 г.
- •4. «Математическая энциклопедия»/Гл. ред. И.М. Виноградов.-М.:Советская энциклопедия
- 5. Занимательная наука. Соругіght, 2008 перевод на русский язык «ЗАО Издательский Дом Ридерз Дайджест»

Спасибо за

BHMAHME