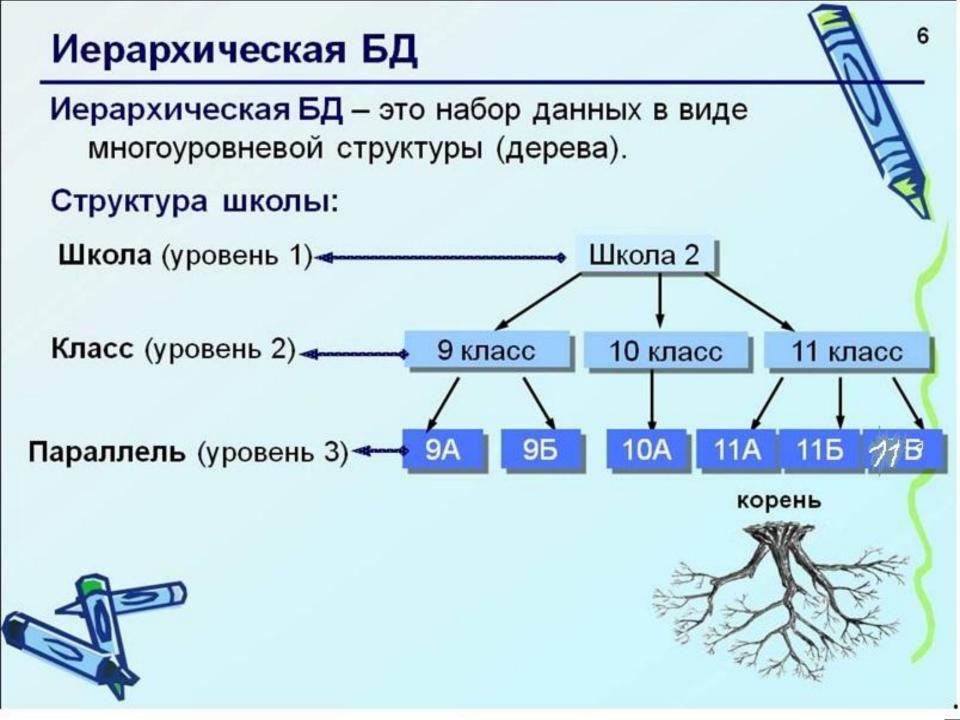
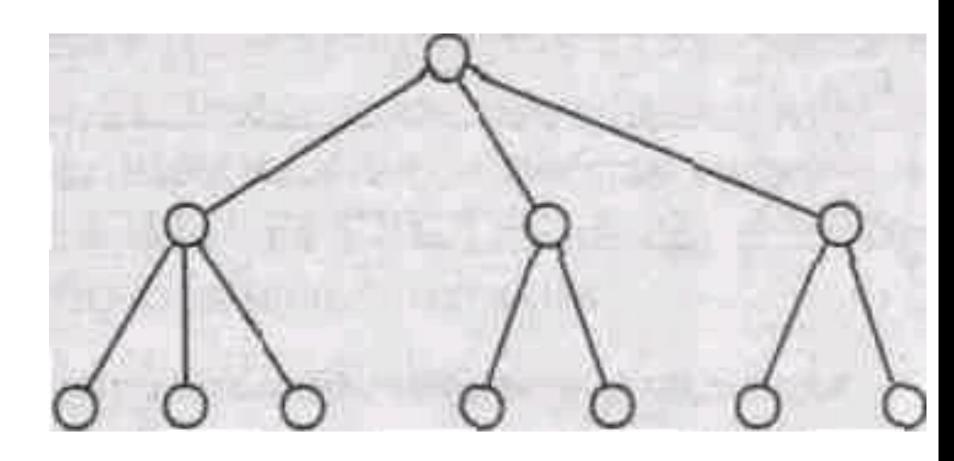
МОДЕЛИ ДАНЫХ

РАЗНОВИДНОСТИ МОДЕЛЕЙ ДАННЫХ

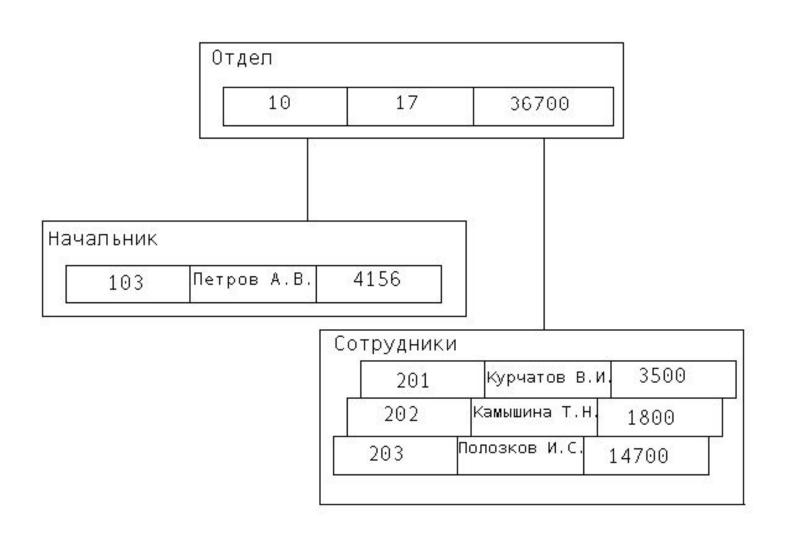
Хранимые в базе данные имеют определенную логическую структуру, т.е. описываются некоторой моделью представления данных (моделью данных), под держиваемой СУБД.


К числу классических относятся следующие модели данных:

- иерархическая,
- сетевая,
- реляционная.


ИЕРАРХИЧЕСКАЯ МОДЕЛЬ

В иерархической модели связи между данными можно описать с помощью упорядоченного графа (или дерева).


Для описания структуры (схемы) иерархической БД на некотором языке программирования используется тип данных «дерево».

ПРЕДСТАВЛЕНИЕ СВЯЗЕЙ В ИЕРАРХИЧЕСКОЙ МОДЕЛИ

ДАННЫЕ В ИЕРАРХИЧЕСКОЙ БАЗЕ

ОСНОВНЫЕ ОПЕРАЦИИ МАНИПУЛИРОВАНИЯ ИЕРАРХИЧЕСКИ ОРГАНИЗОВАННЫМИ ДАННЫМИ

поиск указанного экземпляра БД (например, дерева со значением 10 в поле Отд_номер); переход от одного дерева к другому; переход от одной записи к другой внутри дерева (например, к следующей записи типа Сотрудники);

вставка новой записи в указанную позицию; удаление текущей записи и т. д.

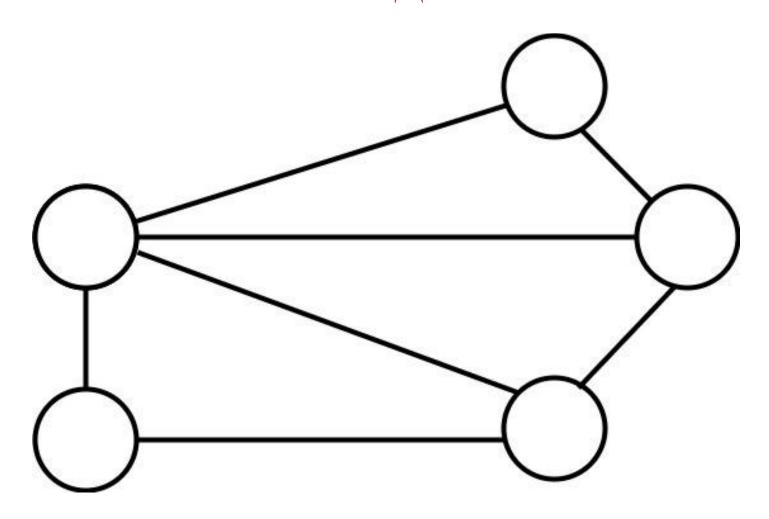
ДОСТОИНСТВА ИЕРАРХИЧЕСКОЙ МОДЕЛИ ДАННЫХ

эффективное использование памяти ЭВМ

неплохие показатели времени выполнения основных операций над данными

удобство для работы с иерархически упорядоченной информацией.

НЕДОСТАТКИ ИЕРАРХИЧЕСКОЙ МОДЕЛИ


громоздкость для обработки ин формации с достаточно сложными логическими связями,

сложность понимания для обычного пользователя.

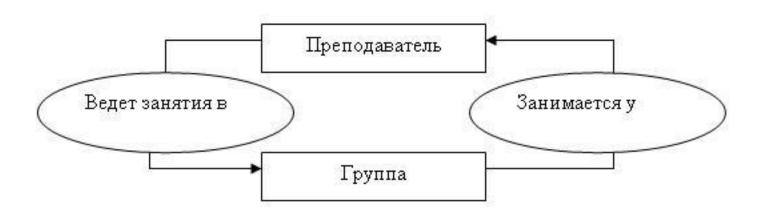
СЕТЕВАЯ МОДЕЛЬ

позволяет отображать разнообразные взаимосвязи эле ментов данных в виде произвольного графа, обобщая тем самым иерархическую модель данных

ПРЕДСТАВЛЕНИЕ СВЯЗЕЙ В СЕТЕВОЙ МОДЕЛИ

СЕТЕВАЯ БД

состоит из набора записей и набора соответствующих связей.


На формирование связи особых ограничений не накладывается.

Если в иерархических структурах запись-потомок могла иметь только одну запись-предка, то в сетевой модели данных запись-потомок может иметь произвольное число записей-предков (сводных родителей).

ПРИМЕР**1** СХЕМЫ СЕТЕВОЙ БД «ОТДЕЛ ПРЕДПРИЯТИЯ»

ФРАГМЕНТА СЕТЕВОЙ БД «УЧЕБНЫЙ ОТДЕЛ КОЛЛЕДЖА»

ВАЖНЕЙШИЕ ОПЕРАЦИИ МАНИПУЛИРОВАНИЯ ДАННЫМИ БАЗ СЕТЕВОГО ТИПА

поиск записи в БД;

переход от предка к первому потомку;

переход от потомка к предку;

создание новой записи;

удаление текущей записи;

обновление текущей записи;

включение записи в связь;

исключение записи из связи;

изменение связей и т. д.

ДОСТОИНСТВА СЕТЕВОЙ МОДЕЛИ ДАННЫХ

возможность эффективной реализации по показателям затрат памяти и оперативности.

большие возможности в смысле допустимости образования произвольных связей.

НЕДОСТАТКИ СЕТЕВОЙ МОДЕЛИ ДАННЫХ

высокая сложность и жесткость схемы БД, построенной на ее основе,

сложность для понимания и выполнения обработки информации в БД обычным пользователем

слабый контроль целостности связей вследствие допустимости установления произвольных связей между записями

Системы на основе сетевой модели не получили широкого распространения на практике

РЕЛЯЦИОННАЯ МОДЕЛЬ

Реляционная модель данных предложена сотрудником фирмы IBM Эдгаром Коддом и основывается на понятии отношение (relation).

Отношение представляет собой множество элементов, называемых кортежами

Наглядной формой представления отношения является двумерная таблица

ОТНОШЕНИЕ

Таблица имеет строки (записи) и столбцы (колонки). Каждая строка таблицы имеет одинаковую структуру и состоит из полей.

Строкам таблицы соответствуют кортежи, а столбцам — атрибуты отношения.

Физическое размещение данных в реляционных базах на внешних носителях легко осуществляется с помощью обычных файлов.

ДОСТОИНСТВА РЕЛЯЦИОННОЙ МОДЕЛИ ДАННЫХ

простота,

понятность

удобство физической реализации на ЭВМ.

Именно простота и понятность для пользователя явились основной причиной широкого использования РМД.

НЕДОСТАТКИ РЕЛЯЦИОННОЙ МОДЕЛИ

отсутствие стандартных средств идентификации отдельных записей сложность описания иерархических и сетевых связей.

ПРИМЕРЫ РЕЛЯЦИОННЫХ СУБД

dBaselll Plus и dBase IY (фирма Ashton-Tate),
DB2 (IBM),
R:BASE (Microrim),
FoxPro ранних версий и FoxBase (Fox Software),
Paradox и dBASE for Windows (Borland),
FoxPro более поздних версий,
Visual FoxPro и Access (Microsoft),
Clarion (Clarion Software),
Ingres (ASK Computer Systems) и Oracle (Oracle).
HyTech (МИФИ)

ДОМАШНЕЕ ЗАДАНИЕ

Составить по одному примеру схемы иерархической и сетевой баз данных.

Оформить каждую схему с пояснениями на отдельном листе. Обязательно указать предметную область.

Для иерархической модели указать уровни, для сетевой – названия связей.

Срок сдачи работы до 11.09.2017.