химическая технология топлив и высокоэнергетических веществ Лекция № 5

КАТАЛИТИЧЕСКИЙ РИФОРМИНГ

КАТАЛИТИЧЕСКИЕ ГИДРОГЕНИЗАЦИОННЫЕ ПРОЦЕССЫ ОБЛАГОРАЖИВАНИЯ НЕФТЯНОГО СЫРЬЯ

- <u>1. Гидрокаталитические процессы</u> реформирования нефтяного сырья:
- Каталитический риформинг;
- Каталитическая изомеризация легких н-алканов
- <u>2. Каталитические гидрогенизационные</u> процессы облагораживания нефтяного сырья:
- Гидроочистка топливных фракций;
- Гидрообессеривание высококипящих и остаточных фракций (вакуумных газойлей, масел, парафинов, нефтяных остатков)

КАТАЛИТИЧЕСКИЕ ГИДРОГЕНИЗАЦИОННЫЕ ПРОЦЕССЫ ОБЛАГОРАЖИВАНИЯ НЕФТЯНОГО СЫРЬЯ

- 3. Каталитические процессы деструктивной гидрогенизации (гидрокрекинга) нефтяного сырья:
- Селективный гидрокрекинг нефтяного сырья (топливных фракций, масел, гидравлических жидкостей) с целью. Повышения ОЧ автобензинов и получения низкозастывающих нефтепродуктов путем гидродепарафинизации;
- Легкий гидрокрекинг вакуумных газойлей и низкооктановых бензинов соответственно для подготовки сырья кат. крекинга с одновременным получением дизельных фракций и для повышения содержания изопарафинов в бензинах

КАТАЛИТИЧЕСКИЕ ГИДРОГЕНИЗАЦИОННЫЕ ПРОЦЕССЫ ОБЛАГОРАЖИВАНИЯ НЕФТЯНОГО СЫРЬЯ

- Глубокий гидрокрекинга дистиллятного сырья (вакуумных газойлей) и нефтяных остатков с целью углубления переработки нефти;
- Гидродеароматизация реактивных топлив и масляных дистиллятов

Распространение гидрокаталитических процессов на НПЗ связано с:

- непрерывным увеличением в общем балансе доли сернистых и высокосернистых нефтей;
- ужесточением требований по охране окружающей среды и к качеству товарных нефтепродуктов;
- необходимостью дальнейшего углубления переработки нефти

Общие признаки гидрокаталитических процессов

- Химические превращения осуществляются под давлением водорода, образующегося в этих процессах (риформинг) и расходуемого в других;
- Химические превращения нефтяного сырья осуществляется на би- и полифункциональных катализаторах;

В состав всех катализаторов входят компоненты, ответственные за протекание гомолитических реакций гидрирования-дегидрирования (Pt, Pd, Co, Ni). В качестве второго компонента, осуществляющего гетеролитические реакции (изомеризация, циклизация, крекинг) применяют оксид алюминия, алюмосиликат, цеолит, сульфиды Мо, W, обладающие р-проводимостью

Каталитический риформинг бензинов

- Основная цель повышение октанового числа бензинов, получение индивидуальных ароматических соединений: бензола, ксилола, толуола и дешёвого технического водорода.
- Сырьё: узкие бензиновые фракции (62–180 °С), для получения ароматики C6 фракции 62–85 °С; C7 85–105 °С; C8 105–140 °С, C7–C9 фракции 85–180 °С.

 Продукты: товарный бензин А-93 содержит 70 % риформата, 30 % – высокооктановых добавок (алкилаты, изомеризаты); катализат риформинга содержит 75 % ароматических углеводородов, остальное – парафины и незначительное количество нафтенов.

Общие сведения

Октановое число – условный показатель, равный объемной процентной концентрации изооктана (2,2,4-триметилпентана) в его смеси с н-гептаном, которая в условиях стандартных испытаний проявляет такую же детонационную стойкость как и испытуемый нефтепродукт.

Методы определения октанового числа:

Определение октанового числа проводят на типовой лабораторной установке, представляющей собой одноцилиндровый двигатель внутреннего сгорания.

- Моторный (ОЧМ) жесткий режим (частота вращения коленчатого вала 900 об/мин)
- Исследовательский (ОЧИ) мягкий режим (частота вращения коленчатого вала 600 об/мин)

Общие сведения

<u>Октановые числа углеводородов</u>

Углеводород	ОЧМ	ОЧИ
Н-бутан	92	93,6
Н-пентан	61,7	61
Изо-пентан	90,3	92,3
Н-гексан	25	24,8
2-метилпентан	73	73,4
3-метилпентан	74,3	74,5
2,3-диметилбутан	95	101,7
Н-гептан	0	0
Н-октан	22	10
2,2,4-триметилпентан	100	100
Циклогексан	77,2	83
Этилциклопентан	62,0	67,2
Бензол	108	116

Октановое число повышается с увеличением степени разветвленности и снижением молекулярной массы

Катализаторы

- Катализаторы, применяемые в промышленном процессах, обязательно должны обладать 2 функциями: дегидрирующей (гидрирующей) и кислотной.
- □ Дегидрирующая функция: металлы 8 группы периодической системы (Pd, Pt, Ni)
- Кислотная функция: кислотными свойствами носителя ү-Аl₂O₃ определяются изомеризующая и крегирующая активность катализатора
- □ Промоторы: Re, Sn, Ir

Катализаторы

- Pt–Re катализаторы классифицируются, как:
- сбалансированные по Pt и Re, например, Pt:Re=0,3:0,3;
- несбалансированные по Pt, например, Pt:Re =0,4:0,2;

несбалансированные по Re, например, Pt:Re =0,2:0,4. t = 480–530 °C, P = 1–3,5 МПа. Объемная скорость 1–3 ч⁻¹ в среде водородсодержащего газа. Осуществляют в каскаде из трех и более последовательно соединенных адиабатических реакторов.
 кажущаяся энергия активации реакции ароматизации составляет 92–158 кДж/моль

(эндотермическая), гидрокрекинга 117-220

кДж/моль (экзотермическая).

Технологические параметры

Основные реакции в процессе риформинга

реакция дегидрирования нафтенов в ароматические (в основном шестичленные нафтены):

углеводородов в циклические (эндотермическая) с выделением Н2: $C_7H_{16} \rightarrow C_6H_5CH_3+H_2;$ □ гидрокрекинг: $C_{10}H_{22}+H_2 \rightarrow 2C_5H_{12}$ (деструктивная гидрогенизация, ей подвергаются парафиновые, реже нафтеновые углеводороды), могут образовываться изомеры – эндотермические реакции;

Основные реакции в процессе риформинга

дегидроциклизация н-парафиновых

Основные реакции в процессе риформинга

 реакции изомеризации нафтеновых и парафиновых углеводородов;
 побочные реакции полимеризации, которые приводят к коксообразованию (подавляют, подбирая температуру и давление).

Основные реакции в процессе риформинга

Эволюция процесса каталитического риформинга

Установки каталитического риформинга бензинов с периодической регенерацией катализатора с предварительной гидроочисткой сырья

Установки каталитического риформинга с непрерывной регенерацией катализатора Технология процесса Классификация установок

- С периодической разенерацией а (стационарный слой катализатора).
- Регенерация осуществляется одновременно во всех реакторах, т.е. происходит остановка процесса риформинга.
- С короткими межрегенеративными циклами (стационарный слой катализатора)
- Регенерация осуществляется в одном из реакторов, а вместо него подключается дополнительный реактор.
- С непрерывной регенерацией (движущийся слой катализатора).
 Катализатор проходит 4, расположенных друг над другом реактора риформинга и поступает в регенератор.

Технология процесса

Состав установки риформинга

- Гидроочистка сырья удаление (гидрирование) веществ, дезактивирующих катализаторы риформинга (соединения серы, азота, металлорганические соединения и т.д.).
- □ Очистка ВСГ от соединений серы, азота и т.д.
- Реакторный блок
- Сепарация газа
- Стабилизация катализата удаление низкокипящих компонентов (УВ газов) методом ректификации.

Технология процесса <u>Технологическая схема установки</u>

каталитического риформинга со стационарным

слоем катализатора

I – гидроочищенное сырье; II – ВСГ; III – стабильный катализат; IV – сухой газ; V – головная фракция. П1 – печь, Р1-3 – реакторы риформинга; Р4 – адсорбер; С1 – сепаратор высокого давления; С2 – сепаратор низкого давления; К1 – ракционирующий адсорбер; П2 – печь; К2 – колонна стабилизации; С3 – приемник.

Технология процесса

Аппаратурное оформление

Распределение объема катализатора: от 1:2:4 до 1:3:7 (в зависимости от состава сырья и назначения процесса)

1 — бункер закоксованного катализатора; 2 — бункер регенерированного катализатора; 3 — шлюз; 4 — дозатор; 5 — разгрузочное устройство; I — гидроочищенное сырье; II — ВСГ; III — риформат на стабилизацию

Технологическая схема установки каталитического риформинга с непрерывной регенерацией катализатора

Реконструкция реакторных устройств

Схема направления движения потоков в реакторе с радиальным вводом сырья:

Результаты работы реактора с радиальным вводом сырья на установке ЛЧ-35-11/1000

от периферии к центру	от центра к периферии г
	к периферии

Направление движения потоков:	от периферии к центру		го	центра к	перифері	ии
Месяц	январь	февраль	апрель	июнь	июль	ноябрь
Переработанное сырье, т	199440	221760	241920	285840	307440	396000
Водород, %	80,00	81,00	84,00	83,00	81,00	83,00
Температура входа, °С	489	492	483	486	489	486
Расход сырья, м ³ /ч	45	48	38	41	40	37
Кратность циркуляции, м ³ /м ³	1222,20	1166,70	1631,60	1536,60	1575,00	1756,80
Степень изомеризации	53,00	53,00	54,00	54,00	54,00	54,00
Степень ароматизации	18,13	16,92	15,82	16,57	16,58	17,34
Ароматика, % мас.	61,11	59,78	58,71	59,47	59,45	60,30
Кокс, % мас.	2,50	2,57	3,37	3,48	3,54	3,76
Октановое число	94,30	93,70	93,20	93,50	93,50	94,00
Выход риформата, % мас.	85			8	8	

Компьютерная система тестирования и выбора катализаторов процесса риформинга

выоор установки производства оензинов	
Ачинский НПЗ (ЛК-6У) Саратовский НПЗ (Л-35-11/300) Лисичанский НПЗ (ЛЧ-35-11/1000)	Установка КИНЕФ (ЛЧ-35-11/1000) Выберите катализатор
Омский НПЗ (Л-35-11/1000) Ангарский НПЗ (Л-35-11/1000) КИНЕФ (ЛЧ-35-11/1000) КИНЕФ (ЛЧ-35-11/600) КИНЕФ (Л-35-11/600) КИНЕФ (ЛГ-35-8/300Б) Сургутский ЗСК (ЛКС-35-64/1000) Новокуйбышевский НПЗ (Л-35-6) Новокуйбышевский НПЗ (Л-35-6) Новокуйбышевский НПЗ (Л-35-8) Новокуйбышевский НПЗ (Л-35-11) Рязанский НПЗ (ЛЧ-35-11/600) Стрежевской НПЗ Сургутский ЗСК Петрофак	PE-44Y RG-482 RG-582 RG-682 IP-51M IP-71 R-86 Ru-125 PR-9

Оптимизация процесса риформинга бензинов и его аппаратурного оформления с учетом сбалансированности кислотной и металлической активности катализатора

Актуальность математического моделирования и оптимизации

- Риформинг является одним из основных и многотоннажных процессов нефтепереработки в производстве высокооктановых бензинов и ароматических углеводородов;
- Определяющими параметрами эффективной работы реакторного узла процесса риформинга являются его конструкция, активность, селективность и стабильность применяемых катализаторов;

Оптимизация работы реактора должна осуществляться с учетом максимальной степени использования катализатора, расхода перерабатываемого сырья и в оптимальных технологических условиях.

Слайд 26 д **26**

Для решения этих проблем решаются следующие задачи:

- оценка реакционной способности углеводородов процесса риформинга бензинов в зависимости от сбалансированности кислотной и металлической активности бифункциональных катализаторов;
- разработка кинетической модели процесса хлорирования катализатора, учитывающей сбалансированность кислотной и металлической активности катализатора и нестационарность работы промышленного реактора риформинга, обусловленную дезактивацией коксогенными структурами (КГС), отравлением, старением катализатора, изменением расхода и углеводородного состава перерабатываемого сырья, влажности системы и температуры;
- разработка методики расчета оптимальной подачи хлора в реакторный блок в зависимости от температуры процесса, степени закоксованности катализатора и состава перерабатываемого сырья;
- разработка аппаратурного оформления реакторного блока для сбалансированной подачи хлорорганических соединений;
- программная реализация разработанной нестационарной кинетической модели реакторного устройства;
- проверка адекватности разработанной модели реальному процессу;
 - внедрение математической модели реакторного блока на промышленных установках для оптимизации режимов их работы на основе учета сбалансированности кислотной и металлической активности реакционной зоны;
- оптимизация сырья, режимов, и конструкции реакторного блока с использованием нестационарной кинетической модели для увеличения ресурсоэффективности процесса.

Слайд 27 Слайд 27

Научная новизна

- нестационарная кинетическая модель, учитывающая взаимодействие углеводородов в целевых и побочных реакциях, обеспечивает оптимизацию работы промышленных реакторов процесса каталитического риформинга бензинов за счет поддержания сбалансированности кислотной и металлической активности катализатора.
- решение многофакторной задачи оптимизации режимных параметров эксплуатации процесса с изменяющейся активностью катализатора вследствие изменения состава и расхода перерабатываемого сырья, влажности реакционной среды возможно регулированием подачи хлорорганических соединений. При этом интервал подачи хлорорганики в пересчете на хлор может составлять от 1 до 4 ррт в зависимости от содержания влаги в сырье и активности катализатора.
- Выявленные закономерности превращения углеводородов в реакторах риформинга и гидродепарафинизации позволили установить, что вовлечения бензиновой фракции с процесса гидродепарафинизации позволит увеличить производительность установки Л-35-11/600 на 40 – 50%.

Практическая ценность

- Разработана нестационарная кинетическая модель и на ее основе сертифицированная программа расчета технологических показателей промышленного процесса риформинга бензинов, позволяющая проводить прогнозный расчет работы реактора при различных режимах подачи хлорорганических соединений, влажности системы, активности катализатора и состава перерабатываемого сырья. Программа внедрена и используется на ООО «ПО «Киришинефтеоргсинтез» (г. Кириши Ленинградской области) для определения оптимального режима подачи хлорорганических соединений в реактор в зависимости от температуры процесса, активности катализатора и состава перерабатываемого сырья. Имеется акт о внедрении.
- Установлены и внедрены на промышленной установке технологические условия гидорохлорирования катализатора риформинга, которые обеспечивают гидрирование неграфитизированного кокса, что снижает коксообразование на активной поверхности катализатора.
- Сертифицированная программа расчета технологических показателей промышленного процесса риформинга бензинов используется на кафедре Химической технологии топлива и химической кибернетики Национального исследовательского Томского политехнического университета в учебном процессе при проведении лабораторных работ по дисциплине «Системный анализ химико-технологических процессов», «Компьютерные моделирующие системы в химической технологии», курсового и дипломного проектирования по направлению 240100 «Химическая технология и биотехнология».

Основные результаты:

- Кинетическая модель процесса каталитического риформингв бензинов, учитывающая нестационарность процесса, обусловленную дезактивацией катализатора коксогенными структурами и изменением соотношения вода/хлорводород в реакционной среде;
- Технологические параметры модели и закономерности их изменения в условиях нестационарного процесса, установленные с применением результатов вычислительного и промышленного эксперимента;
- методика расчета оптимальной подачи хлоорганики в реакторный блок в зависимости от активности катализатора, влажности, температуры процесса и состава перерабатываемого сырья;
- рекомендации по поддержке оптимального соотношения вода/хлорводород реакторный блок риформинга бензинов;
- результаты оптимизационных расчетов работы реакторного блока риформинга, позволяющие повысить ресурсоэффективность процесса, снизить коксообразование и оптимизировать состав перерабатываемого сырья.

Сложности достижения поставленной цели обусловлены:

- Многокомпонентностью и сложным химическим составом исходного сырья (в состав бензиновой фракции входит более 180 углеводородов);
- бифункциональной природой активных центров на поверхности катализатора;
- одновременно протекающими и дезактивирующими катализатор процессами коксообразования, отравления и спекания.

Слайд 31 Слайд 31

Основные реакции

Дегидрирование шестичленных нафтенов:

Дегидроизомеризация пятичленных нафтенов:

Ароматизация (дегидроциклизация) парафинов:

 $n-C_6H_{14} \rightarrow \bigcirc + 4H_2$

CH3

CH₃

Изомеризация:

Основные реакции

Реакции раскрытия кольца:

Деалкилирование:

$$n-C_6H_{14} \xrightarrow{+H_2} 2C_3H_8$$

Реакции коксообразования:

$$C_nH_{2n+2} \longrightarrow C_nH_{2n-x} + \frac{1}{2} H_2$$

$$n-C_{6}H_{14} \xrightarrow{+H_{2}} C_{2}H_{6} + C_{4}H_{10}$$

$$C_{n}H_{2n+2} \longrightarrow C_{n} + (n+1)H_{2}^{\uparrow}$$

Слайд 33 Слайд 33

Основные термодинамические параметры процесса (T=753 K, P=1,6 МПа)

N⁰	Реакция	Энергия Гиббса, кДж/моль	Константа равновесия (Кр)
1	Гидрокрекинг нормальных парафинов;	-50,96	$2,125 \cdot 10^3$
2	Изомеризация нормальных парафинов;	-1,42	1,238
3	Изомеризация изо-парафинов;	-3,72	1,749
4	Дегидроциклизация нормальных парафинов (н-П → H-6);	-5,36	2,239
5	Гидрокрекинг изо-парафинов;	-60,83	9,374·10 ³
6	Дегидроциклизация изо-парафинов (и-П → H-6);	-4,98	2,114
7	Гидрокрекинг нафтенов-5 (H-5 → и-П);	-3,51	1,695
8	Изомеризация нафтенов-6 (H-6 → H-5);	-2,13	1,377
9	Дегидрирование нафтенов-6;	-97,53	23,350·10 ⁵
10	Гидрирование ароматических углеводородов;	66,90	4,283.10-5
11	Дегидроциклизация нормальных парафинов (н-П → H-5);	-4,85	2,073
12	Дегидроциклизация изо-парафинов (и-П → H-5);	-7,32	3,006
13	Изомеризация нафтенов-5;	-17,69	14,292
14	Гидрокрекинг нафтенов-5 (H-5 → н-П);	-10,84	5,103
15	Коксообразование (Ар → НППУ)	-6,67	2,726
16	Коксообразование (H-5 → НППУ)	-19,38	18,426
17	Коксообразование (НППУ — Кокс)	-1,47	1,247
18	Гидрирование (НППУ → Ар)	-12,4	6,452
19	Гидрирование (НППУ \rightarrow H-5)	-54,30	3,51 Олайд 3

н-П, и-П – парафины нормального и изо- строения; Н-5, Н-6 – нафтены пятичленные и шестичленные соответственно; Ар – ароматические углеводороды; НППУ – непредельные промежуточные продукты уплотнения.

Сн-5 – концентрация пятичленных нафтенов, С_{Ар} – концентрация ароматики, Ар – ароматические 5 углеводороды, Со – «обратимый» кокс (НППУ), Сg – графитизированный кокс Слайд 35

Механизм коксообразования на поверхности Ptконтакта

H:C=8:7

Слайд 36 Слайд 36

Уравнение химической реакции хлорирования катализатора.

Вывод уравнения для константы равновесия реакции хлорирования катализатора.

$$Kp = \frac{P_{H_2O}}{P_{HCl}}; Kp = \frac{x_{H_2O}}{x_{HCl}}(1)$$

$$C(Cl) = \frac{A_{MAX} Kp \frac{1}{M}}{1 + Kp \frac{1}{M}} (2)$$

(4)

$$C(Cl) = \frac{A_{MAX}Kp}{M+Kp}(3) \qquad Kp = e^{-\frac{\Delta G}{RT}}$$

 $\Delta G = \Delta H - T \Delta S(5)$

 $Kp = e^{-\frac{\Delta H - T\Delta S}{RT}} = e^{\frac{\Delta S}{R} - \frac{\Delta H}{RT}} (6)$

Термодинамические параметры компонентов реакции хлорирования катализатора риформинга

Вещество	ΔΗ, кДж/моль	ΔS, Дж/моль·К
H ₂ O	-93,9	214,5
HCI	-246,8	222,1
AI-OH → AI-CI	192,7	32,2

$$Kp = e^{4,78 - \frac{4790}{T}}(7) \ Kp = e^{4,78 - \frac{3680}{T}}(8)$$

Зависимость константы равновесия реакции хлорирования катализатора от температуры

Дата	Средняя температура в 1 реакторе, ⁰ С	Кр	Средняя температура в 3 реакторе, ⁰ С	Кр
14.01.2010	452	0,74	479	0,89
18.02.2010	455	0,76	483	0,91
18.03.2010	452	0,74	480	0,90
23.04.2010	455	0,76	481	0,90
21.05.2010	458	0,78	486	0,93
19.06.2010	463	0,80	491	0,96
24.07.2010	467	0,83	496	0,99
22.08.2010	471	0,84	499	1,01

Влияние содержания хлора на катализаторе на качество риформата

Активность	0.97		
Переработанное сырьё т.	260000		
Число крекинга, отн.ед.	2.3		
Водород, % об.	85.5		
Выход водорода, % масс.	1.85	1.88	1.89
Температура входа, ⁰ С	483		
Расход сырья м ³ /ч	60		
Пар/(Нафт+Аром)	1.32		
Кратность цирк. м ³ /м ³	1333.3		
Степень изомеризации, % масс.	50	51	52
Степень ароматизации, % масс.	2	2.74	3.15
Выход риформата, % масс.	87.48	89.1	88.88
н-Пар/и-Пар сырьё	0.95		
Содержание хлора, % масс.	0.94	1	1.04

$$\begin{aligned} Y_{i} &= \sum_{j} K_{ij} \cdot C_{i} \cdot f\left(\int_{1} f_{1} f_{3}, f_{3}\right); \\ f_{1} &= \frac{D_{cmap}}{D_{0}}; \\ f_{2} &= \frac{F_{\kappa \kappa \kappa c}}{F_{0}}; \\ f_{3} &= \frac{C_{H_{2}O}^{0} \cdot C_{H_{2}O}}{C_{HCl} \cdot C_{HCl}^{0}} = N; \end{aligned}$$

Количество хлора на поверхности катализатора.

Схема подачи хлорорганического соединения в реакторы риформинга на установке Л-35-11/600

Изменение активности катализатора установки Л-35-11/600 в шестом сырьевом цикле.

Оптимальные значения кратности циркуляции ВСГ на протяжении сырьевого цикла катализатора.

Влияние кратности циркуляции ВСГ на октановое число и выход целевого продукта

Технологические параметры для расчета на модели.

Объем переработанного сырья	1354,5 т
Расход ВСГ, м3	100000м.куб/час
Влажность ВСГ, мг/кг	22,3 мг/кг
Сера в гидрогенизате, мг/кг	0,20 мг/кг
Раход сырья,м3	60 м.куб/час
Давление в реакторе 2,Мпа	2.2
Температура в реакторе 2, С	483,6
Давление в реакторе 3, Мпа	2,1
Температура в реакторе 3, С	483,7
Давление в реакторе 4, МПа	2
Температура в реакторе 4, С	482,9

Результаты расчетов на

Дата отбора	15.11.2010	16.01.2011	15.02.2011	15.04.2011	Новое сырьё		
Активность	0,91	0,91	0,91	0,91	0,91		
Перераб. сырьё т.	1355	1355	1355	1355	1355		
Число крекинга	1,9	1,9	1,9	1,9	1,9		
Водород, %	84,1	84,1	84,1	84,1	84,1		
Выход водорода, %	1,74	1,82	1,82	1,85	1,82		
Температура входа	484	484	484	484	484		
Расход сырья м3/ч	75	75	75	75	75		
Пар/(Нафт+Аром)	1,25	1,13	1,12	1,28	1,36		
н-Пар/и-Пар сырьё	1,08	1,06	1,06	1,1	1,98		
Кратн. цирк. м3/м3	1333,3	1333,3	1333,3	1333,3	1333,3		
Степень изомеризации	48	46	46	48	40		
Степень ароматизации	16,51	13,87	13,87	21,92	22,8		
Ароматика, %вес.	59,5	60,48	60,48	61,43	60,72		
Октановое число о.ч.и.	96,6	96,2	95,3	95,7	97,7		
МЦП в катал., % вес	0,36	0,39	0,4	0,44	0,48		
Перепад температур	62,2	62,2	62,2	62,2	62,2		
Выход риформата	82,23	83,01	83,01	82,61	82,71		

Подключение установки каталитического риформинга бензинов

Л-35-11/600 для переработки стабильной бензиновой <u>фракции установки дегидропарафинизации Л-24-10-2000</u>

Зависимость октанового числа и выхода стабильного бензина от активности катализатора.

Реакции превращения углеводородов в процессе риформинга бензинов

риформинга	до и после пров	едения процедур	Ы
	гидрохлориров	ания.	
	ло гиппох порирования	после	
	дотидроклорирования	гидрохлорирования	
Твх. Р-2, ⁰ С	498	497	
Твх. Р-3 ⁰ С	495	495	
Твх. Р-4/1 ⁰ С	493	493	
Твх. Р-4/2 ⁰ С	493	493	
$\Delta T P-2, {}^{0}C$	55	56	
T P-3 ⁰ C	20	21	
$\Delta T P-4/1^{\circ}C$	7	9	
$\Delta T P-4/2^{0}C$	7	8	
Загрузка установки,	65	60	
м ³ /час	05	00	
Кратность циркуляции,	1554	1667	
M/M	1554	1007	
Рвх. Р-2, МПа	2,6	21,5	
ОЧИ	93,8	95,0	
Концентрация H _{2 % об}	76,5	76,9	
Расход НС1, мг/кг	3,0	_ Слайд :	52

Сравнение параметров работы блока

Выводы

- 1. Оптимизация процесса риформинга бензинов и его аппаратурного оформления обусловлена учетом при моделировании кинетических закономерностей превращения углеводородов на поверхности бифункциональных Pt-катализаторов.
- 2. Учет реакционной способности углеводородов и сбалансированности кислотной и металлической активности катализатора при моделировании многокомпонентных реакторных процессов является основой для повышения ресурсоэффективности действующих промышленных установок.
- 2.Хлорорганические соединения, превращаясь в хлористый водород обеспечивают сбалансированность кислотной и металлической активности катализатора и, тем самым, повышают активность, селективность и стабильность катализатора, что соответственно приводит к увеличению октанового числа катализата.
- 3.Разработанная и программно реализованная методика подачи хлорорганических соединений в реактор и восстановление кислотной и металлической активности обеспечивает повышение селективности 1.5-2%мас. за счет протекания целевых реакций и снижения коксообразования при работе на оптимальной активности. реакций и снижение активности в реакции коксоообразования.
- 4.Устаноалено, что для достижения сбалансированности кислотной и металлической активности катализатора интервал расхода хлорорганических соединений может составлять 1,0-4,0 мг/кг в зависимости от влажности системы, расхода и углеводородного состава перерабатываемого сырья, активности катализатора и технологических режимов работы установки.
- 5. Критерием сбалансированности кислотной и металлической активности катализатора является рассчитываемая, с использованием нестационарной кинетической модели относительная активность катализатора, которая может изменяться в интервале 0,5 ÷ 1,0 в зависимости от объема и углеводородного состава переработанного и сырья и технологического режима работы реактора (температура, давление, скорость подачи сырья).
- 6. Непрерывный мониторинг установки Л-35-11/600 с применением и программно реализованной математической модели в качестве начальных данных использует технологические параметры ведения процесса и покомпонентный состав сырья и позволяет регулировать кратность циркуляции в интервале 1000-1400 для обеспечения оптимальных условий протекания реакции гидрирования промежуточных продуктов уплотнения.
- 7. Технико-экономическая оценка реконструкции установки Л-35-11/600 для ввода дополнительного источника бензиновой фракции с установки Л-24-10-2000 в условиях заданных режимов работы (загрузка по сырью – 110 м3/час, О.Ч.И.М. – 98-102 п.п., давление до 2,2МПа). При этом ресурсоэффективность установки возрастает возрастает на 20% за счет расширения сырьевого парка..
- 8. В процессе гидрохлорирования при снижении температуры и повышении давления в