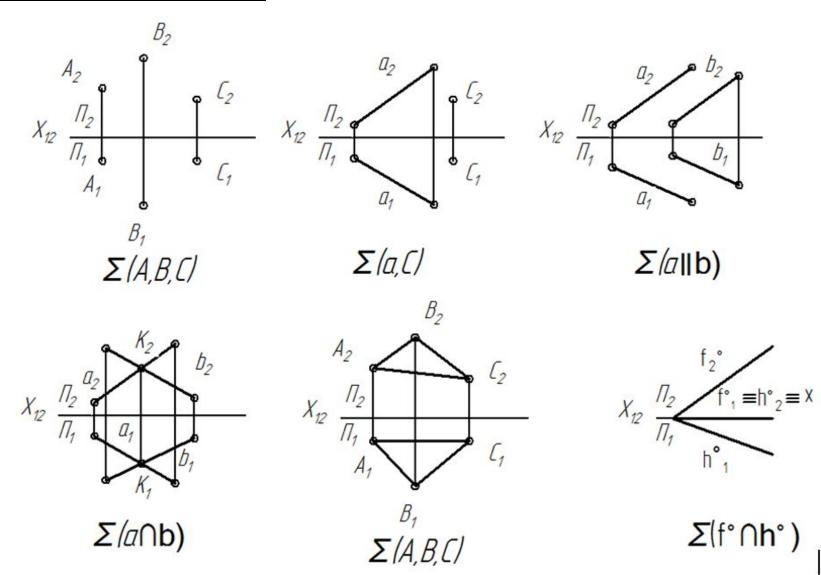
ЛЕКЦИЯ № 2

- 1. Комплексный чертеж плоскости
- 2. Принадлежность точки и прямой плоскости
- 3. Взаимное расположение прямой и плоскости, двух плоскостей

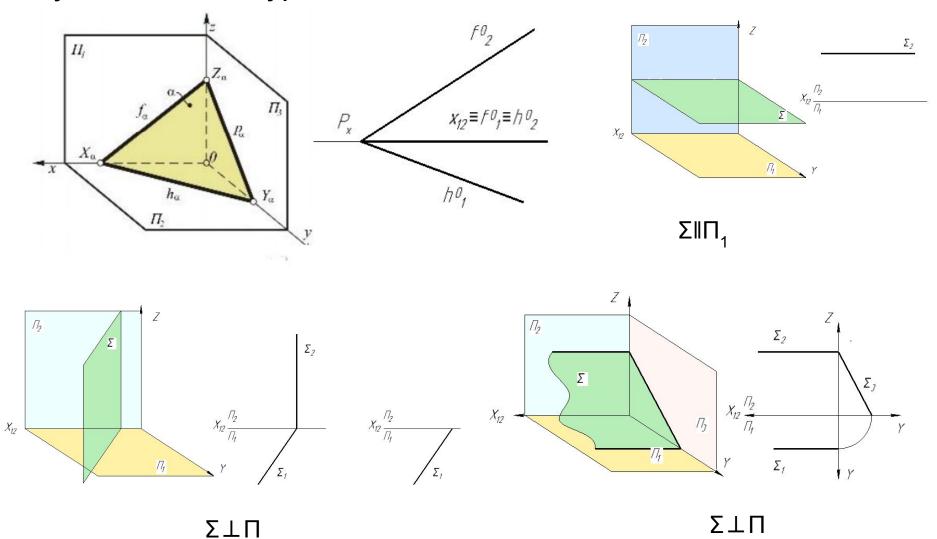
Комплексный чертеж плоскости

Плоскостью общего положения называется плоскость непараллельная и неперпендикулярная плоскостям проекций.

Плоскость может быть задана:



Следами плоскости называются линии пересечения плоскости с плоскостью проекций (нулевые линии уровня).



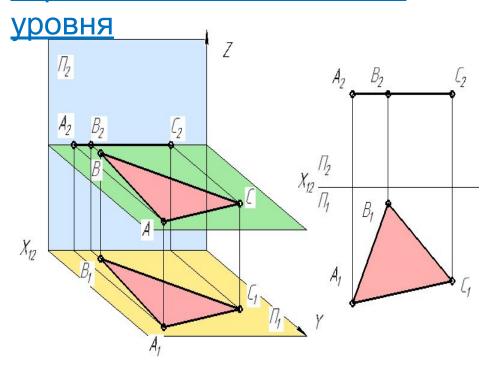
3

Плоскости частного

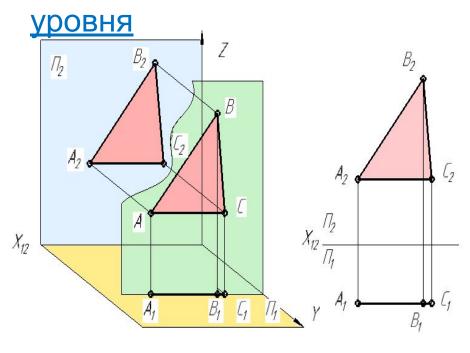
Плоскости урбеняжаные плоскости параллельные плоскости

проекции

Горизонтальная плоскость



Фронтальная плоскость

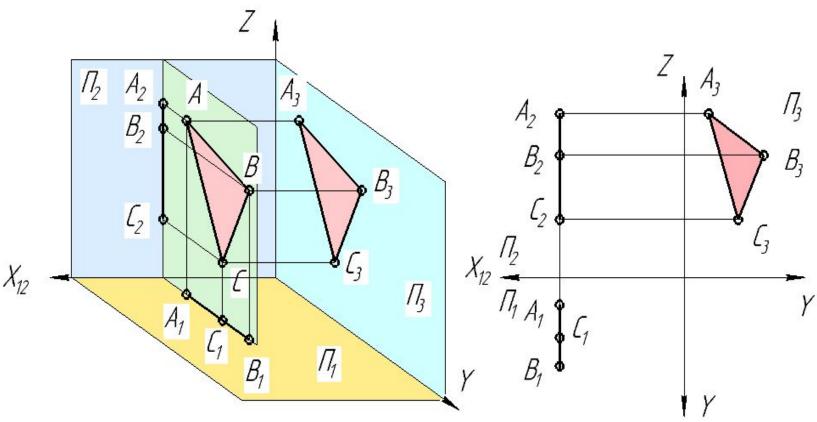


 Σ (ABC) Π_1 A₁B₁C₁-натуральная величина \sum (ABC) $II\Pi_2$ $A_2B_2C_2$ натуральная величина

<u>Профильная плоскость</u> <u>уровня</u>

 $\sum (ABC) ||\Pi_3||$

 $A_3B_3C_3$ -натуральная величина

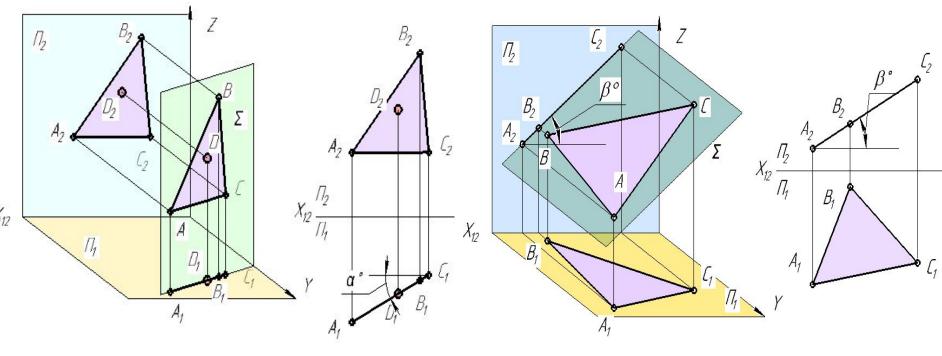


Если плоскость параллельна какой-либо плоскости проекций, то проекции фигур, ей принадлежащих, проецируется на эту плоскость проекций без искажения.

Проецирующие плоскости – плоскости перпендикулярные плоскости проекции.

Горизонтально - проецирующая

Фронтально – проецирующая ПЛОСКОСТЬ ПЛОСКОСТЬ



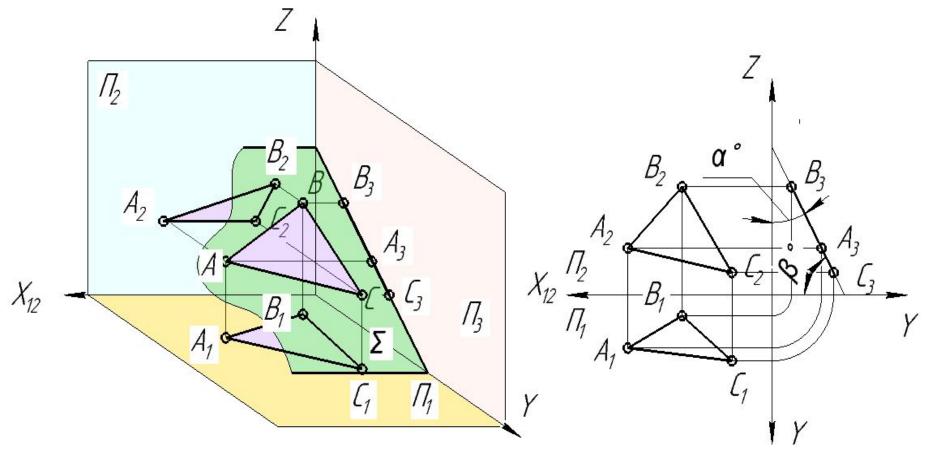
Σ(ABC)

 α° – угол наклона к Π_{2}

Σ(ABC) Π_{2}

β° – угол наклона плоскости к П₁плоскости

Профильно - проецирующая



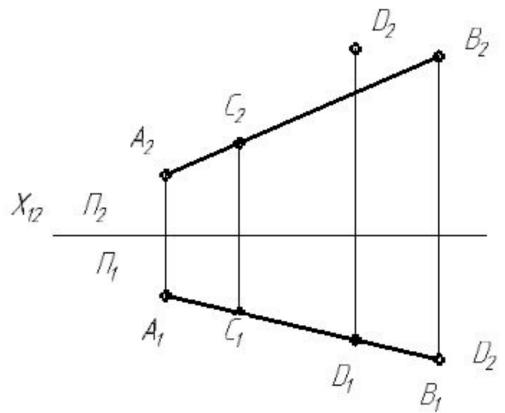
Σ(ABC)

 α – угол ваклона плоскости к Π_2 β – угол наклона плоскости к Π_1

Если плоскость перпендикулярна какой-либо плоскости проекций, то проекции фигур, ей принадлежащих, совпадают с вырожденной проекцией этой плоскости на заданную плоскость.

<u>Принадлежность точки прямой</u>

Если точка принадлежит прямой, то ее проекции принадлежат одноименным проекциам прамой

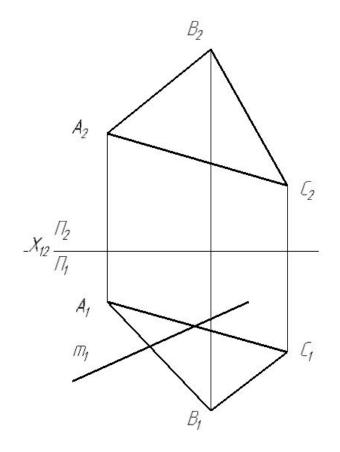


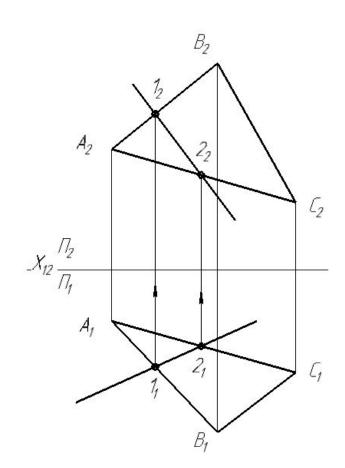
<u>Принадлежность прямой</u>

Прямая **принаднежит и**лоскости, если она проходит через две точки, принадлежащие плоскости

Постройте горизонтальную проекцию прямой т, принадлежащей

плоскости Σ(АВС)



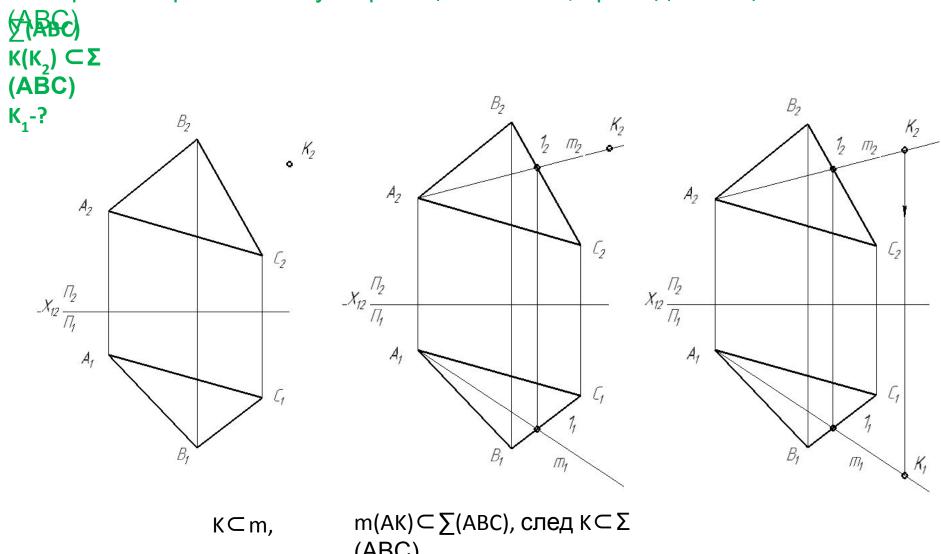


Σ(ABC) m(m₁)⊂Σ (ABC) m₂ - ?

<u>Принадлежность точки</u>

Точка принадлежити оскости, если она принадлежит прямой этой плоскости

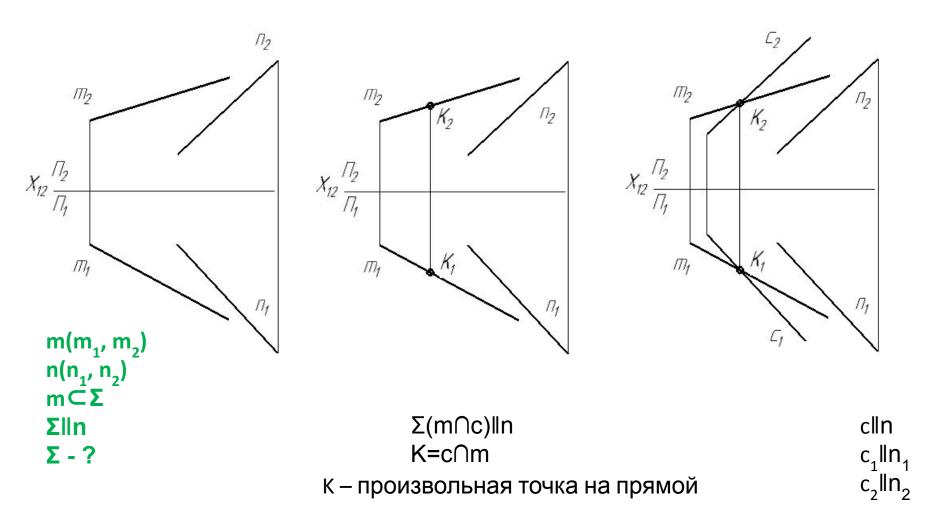
Постройте горизонтальную проекцию точки К, принадлежащей плоскости Σ



Параллельность прямой и

Прямая па**раменена** оскости, если она параллельна любой прямой, принадлежащей этой плоскости

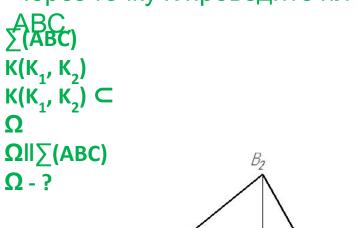
Через прямую m проведите плоскость параллельную прямой n.

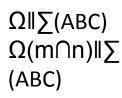


<u>Параллельность</u>

Две плоскости **Парадкентя, ч**если две пересекающиеся прямые одной плоскости параллельны двум прямым другой

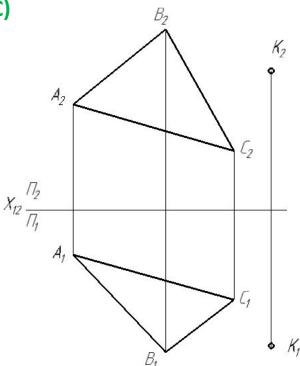
РИГОСКОСТИ проведите плоскость параллельную плоскости

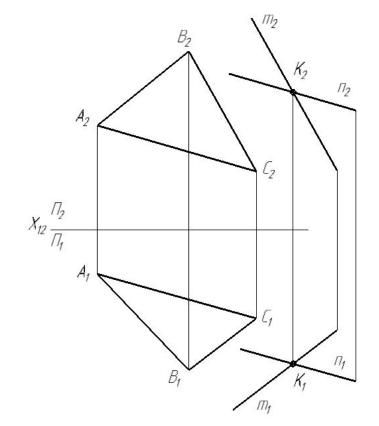




mllBC nllAC

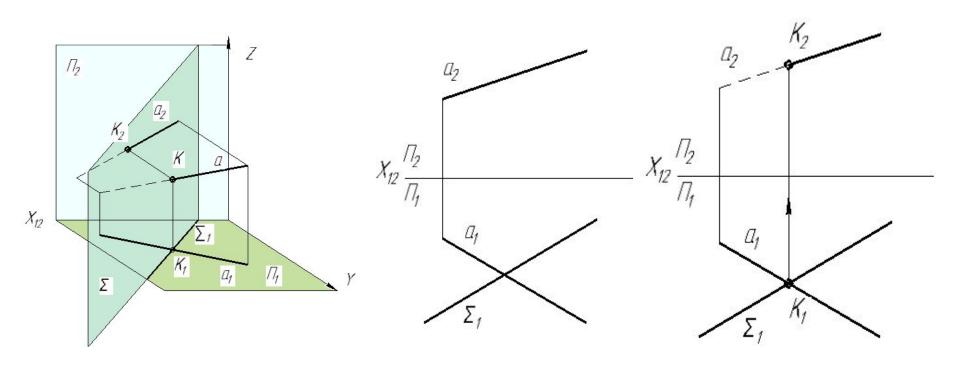
K=n∩m





<u>Пересечение прямой с плоскостью</u>

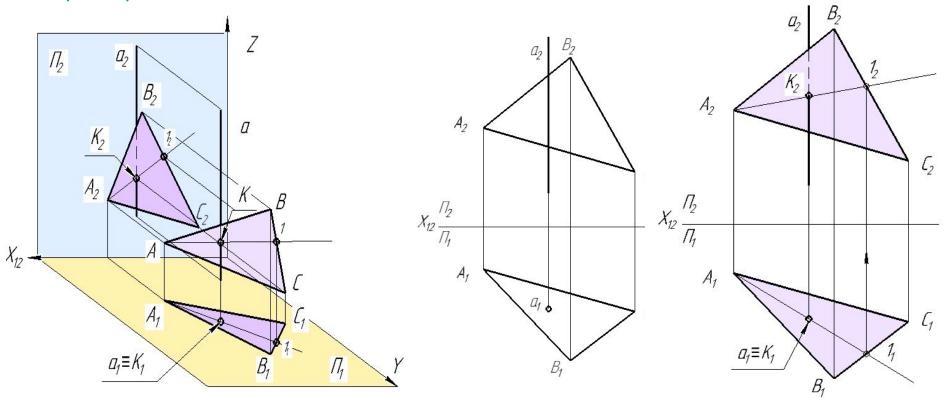
Точка пересечения прямой и плоскости – это такая точка, которая одновременно принадлежит и прямой и плоскости 1. Пересечение плоскости проецирующей с прямой общего подрожения точку пересечения прямой а с плоскостью Σ⊥П₁



K=a∩∑

Проекция точки пересечения прямой общего положения с горизонтальнопроецирующей плоскостью определяется на горизонтальной проекции, так как

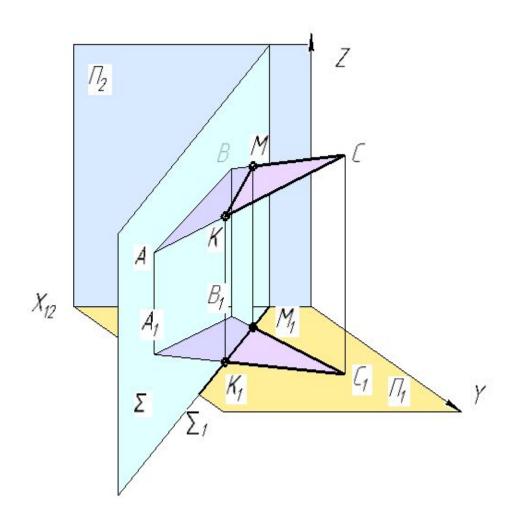
2. Пересечение прямой <u>проецирующей</u> с <u>общего</u>
плоскостины точку пересечения прямой а ⊥П₁ с плостоложения (ABC)

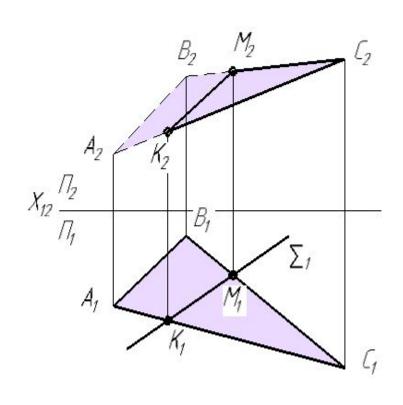


K=a∩Σ

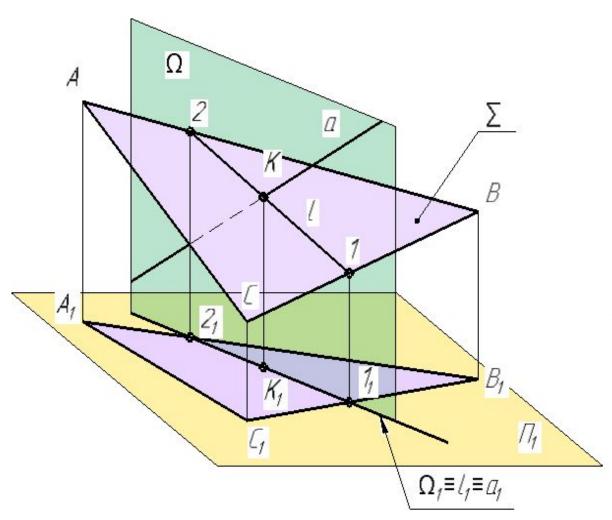
Проекция точки пересечения горизонтально-проецирующей прямой с плоскостью общего положения определяется на горизонтальной проекции, так как а ⊥ П₁ К ⊂ (A-1), К₁ ⊂ A₁1₁. Ее горизонтальная проекция совпадает с вырожденной проекцией этой прямой на горизонтальную плоскость. Фронтальная проекция точки К определяется на основании принадлежности точки плоскости.

3. <u>Определение линии пересечения двух плоскостей, одна</u> <u>из которых проецирующая</u>

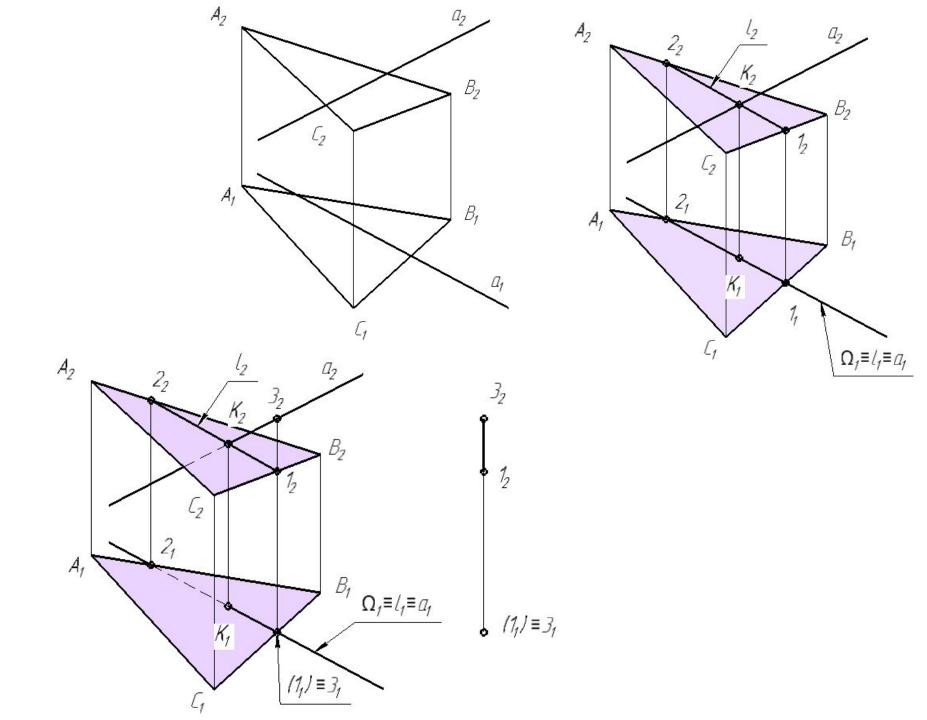




4. Определение точки пересечения прямой и плоскости общего положения

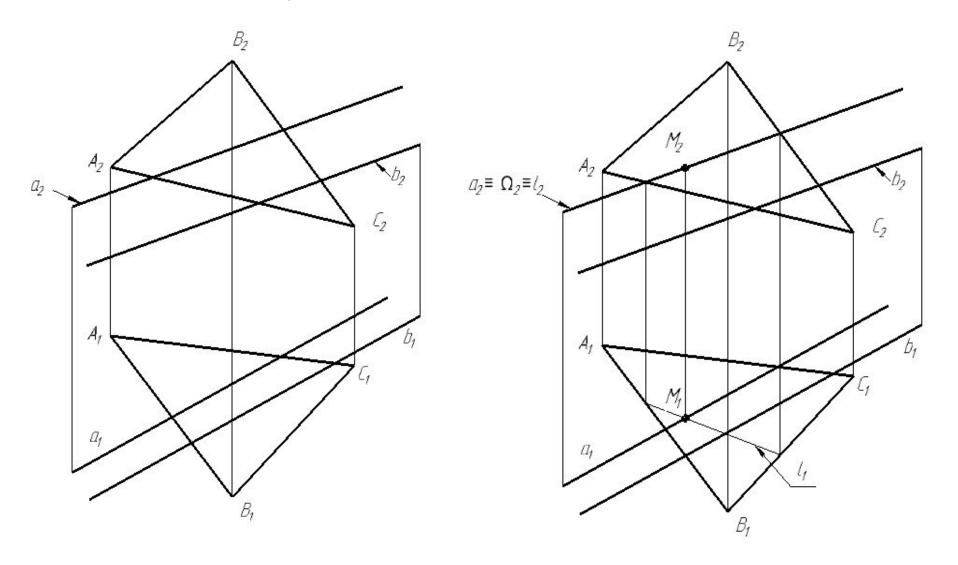


- 1. Заключить прямую а в проецирующую плоскость $\Omega \perp \Pi_1$ $(\Omega \perp \Pi_2)$
- Найдите линию пересечения I(1,2)= Ω∩Σ(ABC)
- 3. Определите точку пересечения K=I∩а
- 4. Определите относительную видимость элементов.

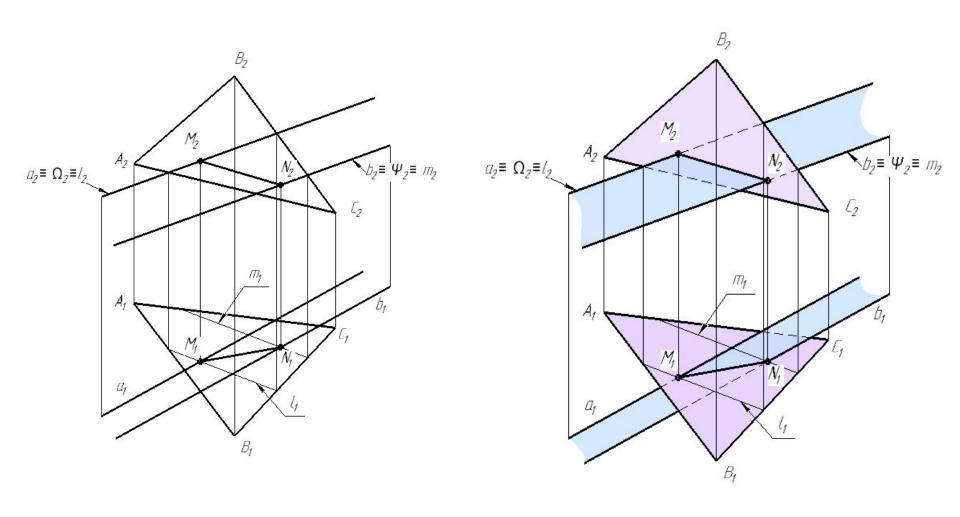


5. Определение линии пересечения двух

- 1. Заключить прямую $\overline{\bf a}$ в плоскость $\Omega \perp \Pi_{_1} (\Omega \perp \Pi_{_2})$
- Найдите линию пересечения $I=\Omega \cap \Sigma(ABC)$
- Определите точку пересечения M=I∩a

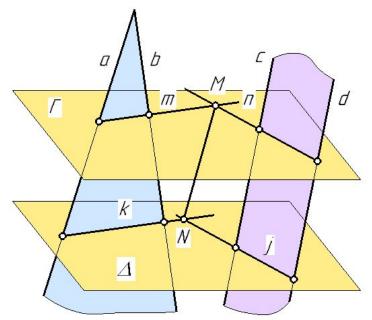


- 4. Заключить прямую **b** в плоскость $\Psi \perp \Pi_{_{1}} (\Psi \perp \Pi_{_{2}})$
- 5. Найдите линию пересечения m= Ψ∩Σ(ABC)
- 6. Определите точку пересечения N=m∩b
- 7. Определите относительную видимость элементов.

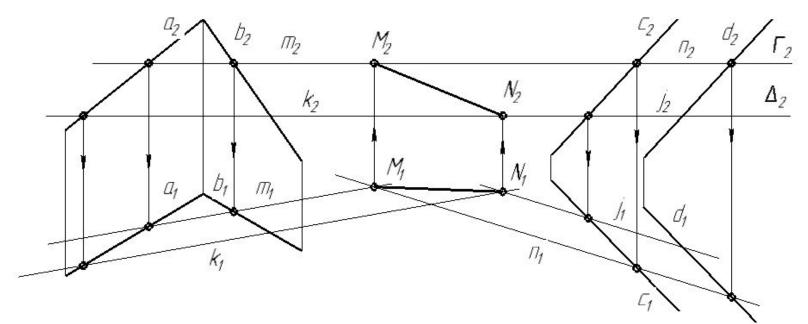


6. Определение линии пересечения двух плоскостей методом

<u>секущих плоскостей</u>

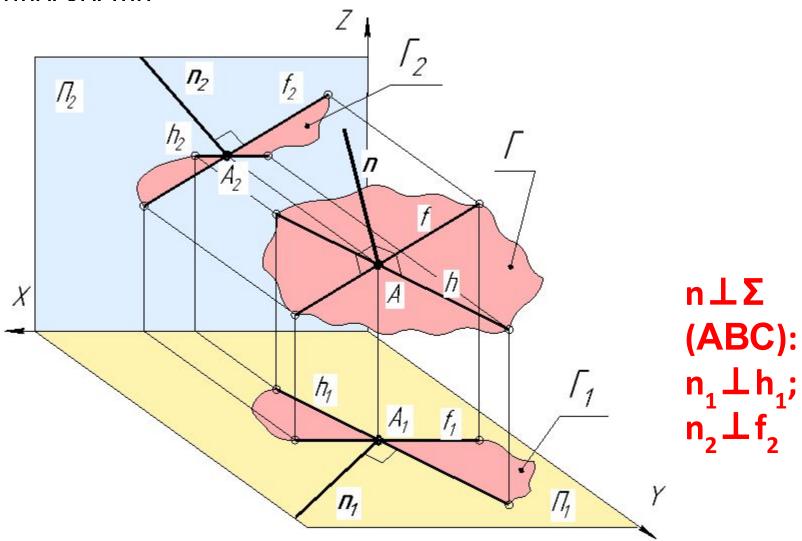


- 1. Проведите плоскость $\Gamma / / \Pi_{1}$
- Постройте линии пересечения: m=Г∩ Σ(a ∩b); n=Г∩ Ω
- Определите точку пересечения М=m∩n
- 4. Проведите плоскость $\Delta / / \Pi_{_{1}}$
- 5. Постройте линии пересечения: $k = \Delta \cap \Sigma(a \cap b); j = \Delta \cap \Omega$
- 6. Определите точку пересечения N=k∩j
- 7. MN= $\Gamma \cap \Delta$

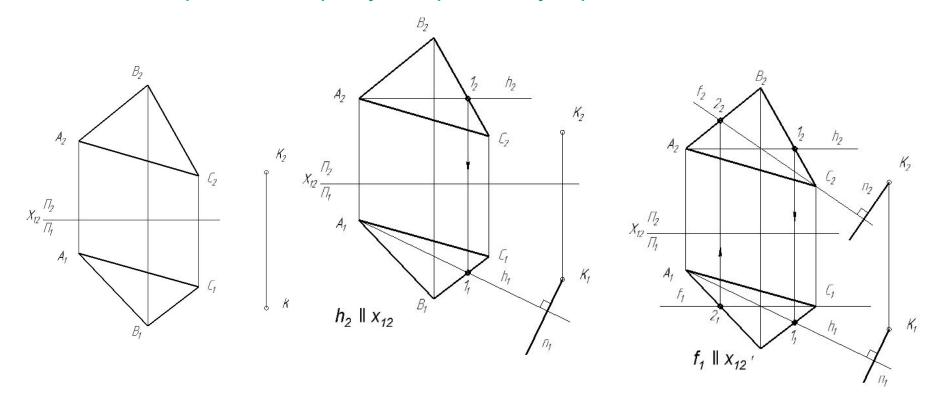


<u>Перпендикулярность прямой и</u>

Прямая п**ерпеновкуля**рна плоскости, если она перпендикулярна двум пересекающимся прямым этой



Из точки К проведите прямую перпендикулярно плоскости Σ(АВС)

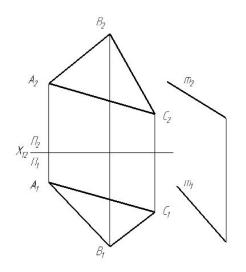


n L Σ (ABC) n₁ L h₁,

3. Перпендикулярность двух

Две плоскости перпроскостейы, если одна из них содержит прямую, перпендикулярную к другой плоскости.

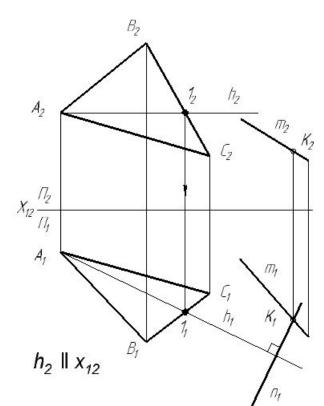
Через прямую m проведите плоскость, перпендикулярную плоскости Σ(ABC)



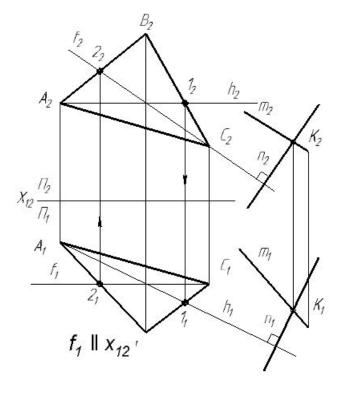
 $\Sigma(ABC)$; m(m₁, m $\Omega \supset m$; $\Omega \perp \Sigma(ABC)$

 $\begin{array}{l} \Omega(\mathsf{m} \cap \mathbf{n}) \perp \Sigma(\mathsf{ABC}) \\ \mathsf{n} \perp \Sigma(\mathsf{ABC}) \colon \mathsf{n}_1 \perp \mathsf{h}_1, \\ \mathsf{n}_2 \perp \mathsf{f}_2 \end{array}$

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости.



 $K \subset m$, $K=m \cap n$ Точка K выбрана произвольно $h \subset \Sigma(ABC)$ $f \subset \Sigma(ABC)$

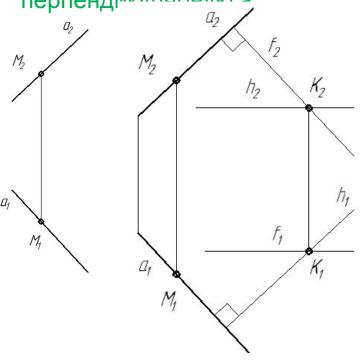


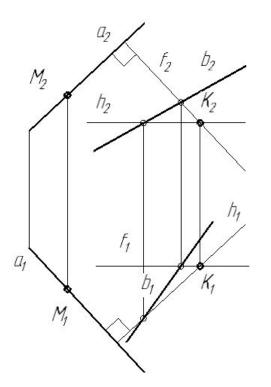
4. Перпендикулярность

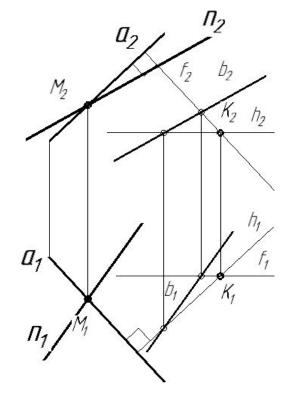
Две прямые перпендик **улямых** если одну из них можно заключить в плоскость, перпендикулярно другой прямой.

Через точку М проведите прямую

перпендичиваршию э







Через произвольную точку К проведите плоскость Σ(h∩f)

١ . .

В плоскости $\Sigma(h \cap f)$ проведите прямую $b \subset \Sigma(h \cap f)$.

Через точку М проведите n параллельно b.