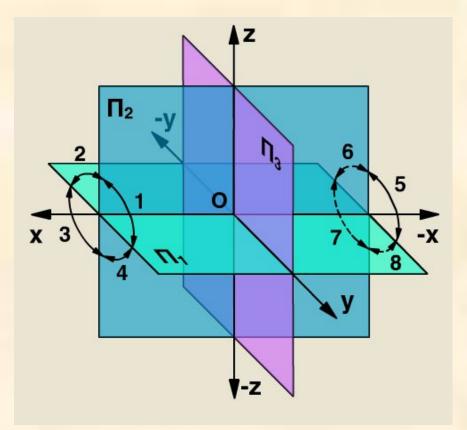
Казанский государственный энергетический университет

Лекция 3

Пространственная модель координатных плоскостей проекций.
Ортогональная система координат.
Проецирование на плоскости проекций.
Комплексный ортогональный чертеж



Пространственная модель координатных плоскостей проекций

Определение способов проецирования пространственных форм на плоском чертеже является прямой задачей начертательной геометрии. Решение обратной задачи предполагает восстановление по плоскому изображению формы, размеров и расположения геометрического тела. Для того чтобы чертеж был обратим необходимо иметь проекции изображаемого тела на две или три плоскости проекций.

Для определения положения геометрического тела в пространстве и выявления его формы по ортогональным проекциям наиболее удобной является декартова система координат, которая состоит из трёх взаимно перпендикулярных плоскостей.

Рассмотрим пространственную модель координатных плоскостей проекций.

П1 – горизонтальная плоскость проекций;

П2 – фронтальная плоскость проекций;

П3 - профильная плоскость проекций

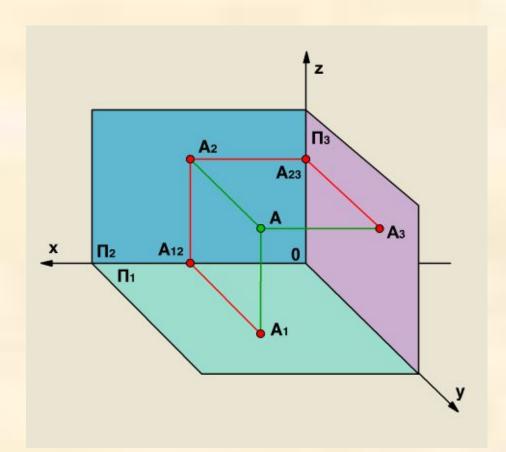
Линии пересечения плоскостей проекций образуют оси координат: ОХ - ось абсцисс, ОҮ - ось ординат, ОZ – ось аппликат, а точка пересечения координатных осей О принимается за начало координат

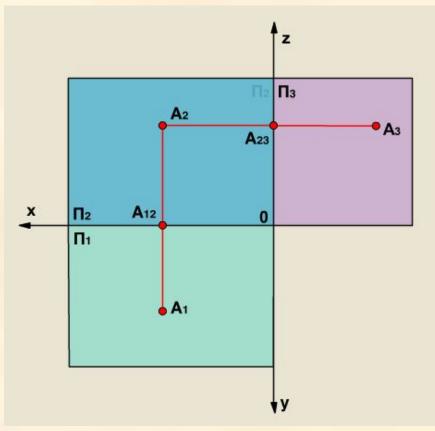
Построение ортогонального чертежа

Схему построения обратимого ортогонального чертежа развил Гаспар Монж. Наиболее удобная для фиксирования геометрического тела в пространстве и выявления его формы является декартовая система координат, состоящая из трех плоскостей проекций: П1 – горизонтальной плоскости проекций, П2 - фронтальной плоскости проекций, П3 – профильной плоскости проекций.

Для перехода от пространственной модели плоскостей проекций к более простой плоскостной модели, т. е. к плоскому чертежу, плоскости проекций П1 и П3 совмещают с плоскостью П2.

Построение чертежа выполняется методом ортогонального проецирования.


Основные инвариантные (независимые) свойства параллельного проецирования


При параллельном проецировании нарушаются метрические характеристики геометрических фигур (происходит искажение линейных и угловых величин), причём степень нарушения зависит как от аппарата проецирования, так и от положения проецируемой геометрической фигуры в пространстве по отношению к плоскости проекции.

Но наряду с этим, между оригиналом и его проекцией существует определённая связь, заключающаяся в том, что некоторые свойства оригинала сохраняются и на его проекции. Эти свойства называются инвариантными (проективными) для данного способа проецирования.

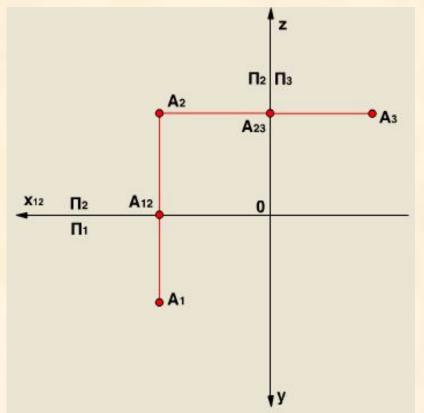
Свойства параллельного проецирования:

- 1. Проекцией точки является точка.
- 2. Проекцией линии является линия.
- 3. Проекцией прямой в общем случае является прямая. Если прямая совпадает с проецирующим лучом, то ее проекцией является точка.
- 4. Если точка принадлежит линии, то проекция точки принадлежит проекции линии.
- 5. Если точка делит длину отрезка в отношении m:n, то проекция этой точки делит длину проекции отрезка в том же отношении.
- 6. Если прямая параллельна плоскости проекций, то ее проекция соответствует оригиналу.
- 7. Проекция прямой общего положения меньше ее истинной длины и зависит от величины угла наклона прямой к плоскости проекций.

Полученный чертеж является трёхпроекционным ортогональным чертежом точки А.

На чертеже линии связи A2 A1 и A2 A3 перпендикулярны к соответствующим осям. По ортогональному чертежуможно судить о расстоянии от точки A до плоскостей П1, П2 и П3.

Взаимосвязь между проекциями оригинала на комплексном чертеже заключается в следующем:

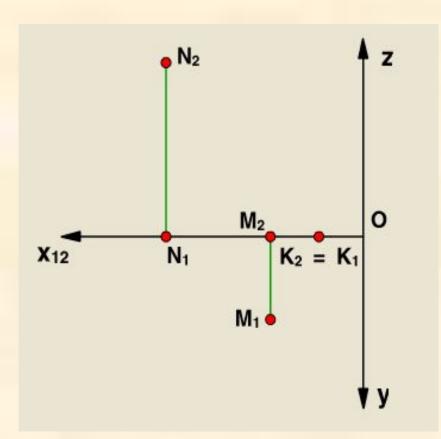

- Две проекции точки располагаются на одной линии связи.
- Линии связи между собой параллельны.
- Две проекции точки определяют положение её третей проекции

Выводы:

- 1.Совокупность двух и более взаимосвязанных ортогональных проекций геометрической фигуры, расположенных на одной плоскости чертежа, называется комплексным ортогональным чертежом.
- 2. Обратимый комплексный чертеж должен содержать не менее двух проекций геометрической фигуры.
- 3. Для того чтобы чертеж геометрической фигуры был обратим, он должен содержать столько проекций, чтобы каждая ее точка имела не менее двух проекций.

Задание и изображение точки на комплексном ортогональном чертеже

По отношению к плоскостям проекций точка может занимать общее положение, т. е. ни принадлежать ни одной из плоскостей проекций, и частное положение – находиться на одной из этих плоскостей, сразу на двух и одновременно на трёх плоскостях проекций.



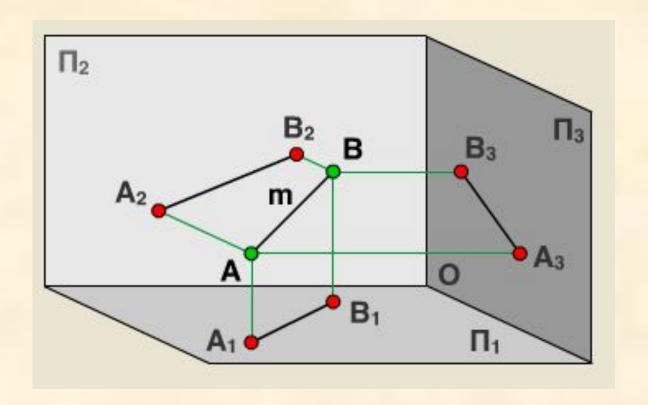
Точка А – точка общего положения.

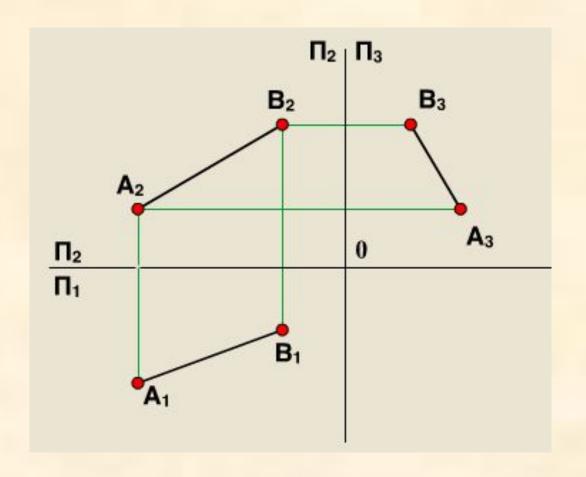
Точка А1 является горизонтальной проекцией точки А.

Точка А2 - ее фронтальной про-екцией.

Соответственно, точка АЗ профильной проекцией.

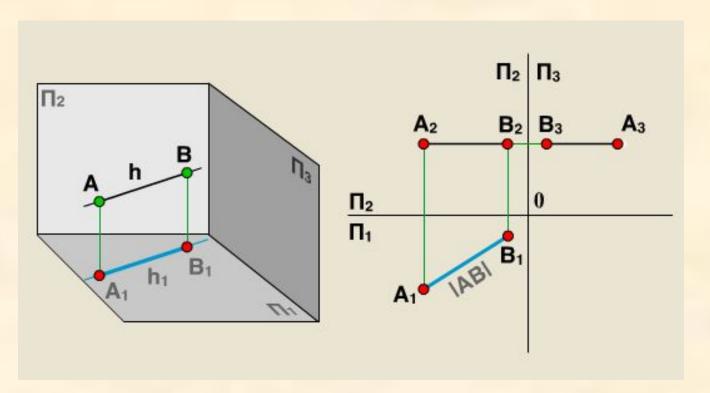
Точки М, N и К – точки частного положения. Точка N принадлежит плоскости П2, точка М принадлежит плоскости П1, а точка К принадлежит оси проекций ОХ, следовательно, принадлежит сразу обеим плоскостям.

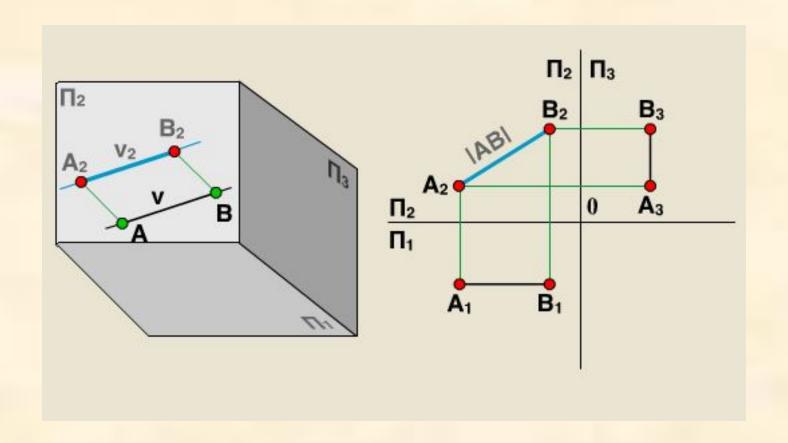

Задание и изображение прямой на комплексном ортогональном чертеже


Прямая есть такое множество точек, свойства которого определяются известной аксиомой прямой линии: «через любые две различные точки проходит одна и только одна прямая» и теоремой, которая следует из аксиомы прямой: «две различные прямые могут иметь не более одной общей точки".

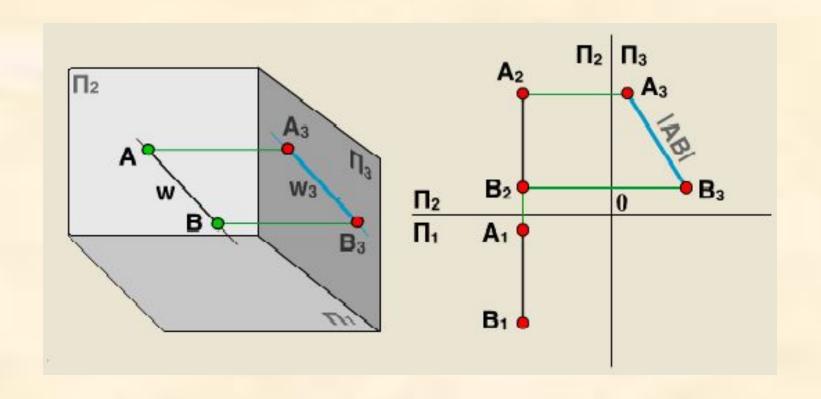
По расположению относительно плоскостей проекций прямые могут быть общего и частного положений.

Прямая, не параллельная и не перпендикулярная ни одной из плоскостей проекций, называется прямой общего положения.

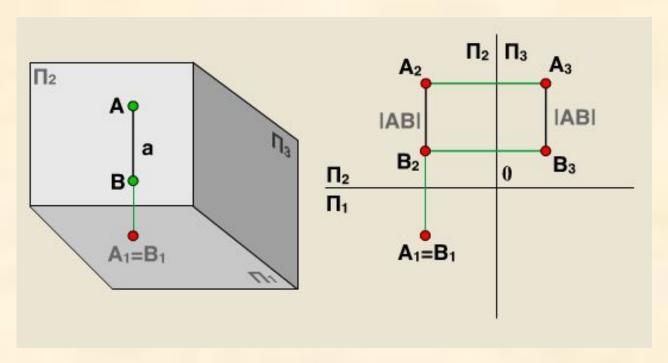

Так как две точки однозначно определяют положение прямой в пространстве, то достаточно задать на комплексном чертеже проекции двух точек, принадлежащих прямой и попарно соединить их первые, вторые и третьи проекции.



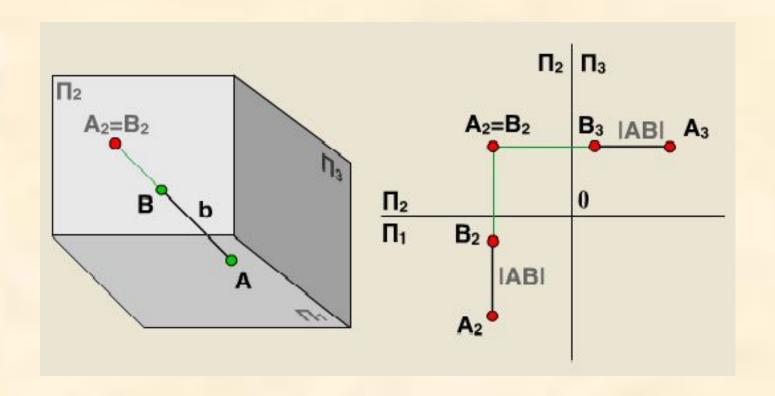
Комплексный чертеж прямой общего положения.


Прямая частного положения (или прямая уровня) – прямая, параллельная хотя бы одной из плоскостей проекций.

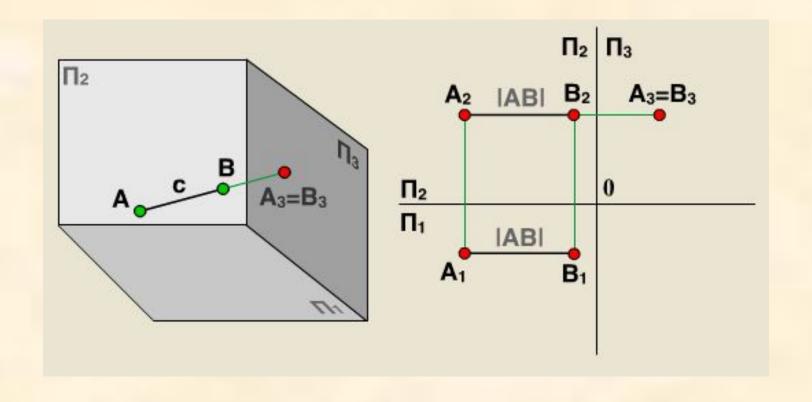
Прямая, параллельная горизонтальной плоскости проекций, называется горизонталью - h. На горизонтальную плоскость проекций горизонталь проецируется в натуральную величину. Графический признак горизонтали — z = const.



Прямая, параллельная фронтальной плоскости проекций, называется фронталью - f. На фронтальную плоскость проекций фронталь проецируется в натуральную величину. Графический признак фронтали – y=const.



Прямая, параллельная профильной плоскости проекций, называется профильной прямой - р. На профильную плоскость проекций профильная прямая проецируется в натуральную величину.


Прямая называется проецирующей, если она перпендику-лярна одной из плоскостей проекций. Одна из проекций такой прямой есть точка.

Горизонтально проецирующая прямая – прямая, перпендикулярная горизонтальной плоскости проекций. Горизонтальной проекцией такой прямой является точка, а фронтальная и профильная проекции || оси z.

Фронтально проецирующая прямая – прямая, перпендикулярная фронтальной плоскости проекций. Фронтальной проекцией такой прямой является точка горизонтальная и профильная проекции || оси у.

Профильно проецирующая прямая – прямая, перпендикулярная профильной плоскости проекций. Профильной проекцией такой прямой является точка, а горизонтальная и фронтальная проекции || оси х.

