Уральский государственный аграрный университет

д.х.н., проф. Хонина Татьяна Григорьевна

Органическая химия Алифатические углеводороды

Екатеринбург, 2019

План

- 1. Введение в органическую химию. Теория строения А.М. Бутлерова. Основные понятия: гомологи, изомеры, радикалы, функциональные группы, индуктивный и мезомерный эффекты.
- 2. Классификация органических веществ.
- 3. Углеводороды:
- 3.1. Предельные углеводороды (алканы).
- 3.2. Этиленовые углеводороды (алкены).
- 3.3. Алкадиены.
- 3.4. Алкины.

- п.1. Введение в органическую химию. Теория строения А.М.
 Бутлерова. Основные понятия: гомологи, изомеры, радикалы, функциональные группы, индуктивный и мезомерный эффекты.
- Органическая химия
 — химия углеводородов и их производных.
- **Углеводороды** (УВ) простейшие органические вещества, молекулы которых состоят из атомов только двух элементов: С и H (CH_4 , C_4H_{10}).
- Производные УВ продукты замещения атомов «Н» в молекулах УВ на другие атомы или группы атомов.

	Органическая вещества	
Природные (нефть, белки, жиры, углеводы <mark>)</mark>	Искусственные (бензин, вескоза)	Синтетические (лекарства, витамины, пластмасса)

Ī		4	
ı	Органические	соединения	
ı	Важнейшие характристики	Примечания	
I	 Многочисленность (около 27 млн.) 	Неорганические соединения – значительно меньшее число	
l	 В состав обязательно входят атомы Н и С 	Все органические соединения горючи, в отличие от неорганических	
I	 Низкая температура плавления, соединения непрочны 	У неорганических соединений – высокие температуры плавления и прочность	
l	■В большинстве - неэлектролиты (в растворе - в виде молекул)	Органические реакции протекают медленно и чаще с участием катализатора, в отличие от неорганических реакций	
ı	Большая молекулярная масса		
ı	Оброзуют гомологические ряды	определение	
	•Образуют изомеры	определение	
	■Большинство - участники или продукты процессов, протекающих живых организмах		

Теория строения органических веществ A. М. Бутлерова

- 1. Атомы в молекулах соединены друг с другом не беспорядочно, а в определенной последовательности, согласно их валентности.
- 2. Свойства веществ зависят не только от того, атомы каких элементов и в каком количестве входят в состав молекул, но и от последовательности соединения атомов в молекулах, т.е. от их химического строения.
- 3. Атомы или группы атомов, входящих в состав молекулы, взаимно влияют друг на друга. Это взаимное влияние определяет свойства веществ.
- 4. Строение молекул может быть установлено на основе изучения их химических свойств. И наоборот: зная строение вещества, можно предсказать его свойства.

Изомерия

Вещества, которые имеют один и тот же качественный и количественный составы, но отличаются по своему строению и свойствам, называются изомерами, а явление существования таких веществ носит название изомерии

ИЗОБУТАН (С4Н10)

Гомологи

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разницу СН2. Вещества такого ряда называются гомологами

Гомологический ряд предельных углеводородов:

СН4 - метан

С2Н6 - этан

СзНв – пропан

С4Н10 - бутан

С5Н12 - пентан

п.2. Классификация органических веществ

- Классификация по типу углеродного скелета
- В зависимости от строения углеродного скелета органические соединения разделяют на **ациклические** соединения с открытой (незамкнутой) углеродной цепью и **циклические**.
- Ациклические соединения могут быть как насыщенными, так и ненасыщенными.
- Циклические соединения соединения с замкнутой цепью в зависимости от природы атомов, составляющих цикл, делят на карбоциклические и гетероциклические.
- Карбоциклические соединения содержат в цикле только атомы углерода и делятся на две существенно различающиеся по химическим свойствам группы: алифатические циклические (сокращенно алициклические) и ароматические.
 - Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов гетероатомов.

Классификация органических веществ (продол.)

Классификация по типу функциональной группы

В большинстве органических соединений, кроме атомов углерода и водорода, содержатся атомы других элементов (не входящие в скелет). Эти атомы или их группировки, во многом определяющие физические и химические свойства органических соединений, называют функциональными группами.

Важнейшие функциональные группы:

```
-F, -CI, -Br, -I (галоген) галогенпроизводные -OH (гидроксил) спирты, фенолы >C=O (карбонил) альдегиды, кетоны -COOH (карбоксил) карбоновые кислоты -NH_2, >NH, >N- (аминогруппа) амины -NO_2 (нитрогруппа) нитросоединения -SO_3H (сульфогруппа) сульфокислоты
```

п.3. Углеводороды.

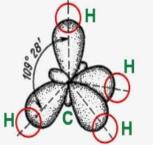
Углеводороды. Классификация углеводородов

Углеводороды-это класс органических соединений,молекулы которых состоят только из углерода и водорода

п.3.1.

Алканы

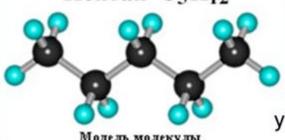
Гомологический ряд алканов неразветвленного строения


Формула алкана	Название	t _{mm.} °C	t кип.°С	Агрегатное состояние (н.у.)	
$\mathrm{CH_4}$	метан	-184,0	-161,5		
C_2H_6	этан	-172,0	-88,3	газы	
C₃H ₈	пропан	-189,9	-42,17		
C ₄ H ₁₀	бутан	-135,0	-0,5		
C ₅ H ₁₂	пентан	-131,6	36,2		
C ₆ H ₁₄	гексан	-94,3	69,0		
C7H16	гептан	-90,5	98,4	жиниости	
C ₈ H ₁₈	октан	-56,5	125,8	жидкости	
C ₉ H ₂₀	нонан	-53,7	150,8		
$C_{10}H_{22}$	декан	-29,7	174,0		
09090					
$C_{20}H_{42}$	эйкозан	36,8	205,0	твердые	

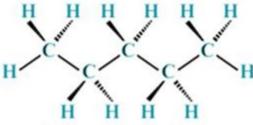
Строение алканов

СТРОЕНИЕ МОЛЕКУЛ АЛКАНОВ

При этом появляется валентный угол 109°28', что приводит к образованию тетраэдрической формы молекул.


Н: С: Н метан Н

Если наибольшее перекрывание электронных облаков находится на прямой, соединяющей центры близлежащих ядер атомов, то связь называется сигма σ. Это ковалентная связь прочная.


Строение молекулы пентана

Пространственное строение

Пентан С5Н12

Модель молекулы

Стереохимическая формула

Особенности

Для молекул алканов, содержащих свыше 2-х атомов углерода, характерны изогнутые формы-зигзагообразное строение.

Расстояние между соседними атомами углерода строго постоянно и равно 0.154нм

Изомерия. Номенклатура

- Изомерия углеродного скелета (у пентана 3 изомера: н-пентан, 2-метилбутан, 2,2диметилпропан)
- Номенклатура

6
 $_{\mathrm{CH_{3}}}^{5}$ $_{\mathrm{CH_{2}}}^{5}$ $_{\mathrm{CH_{2}}}^{4}$ $_{\mathrm{CH_{2}}}^{3}$ $_{\mathrm{CH_{2}}}^{2}$ $_{\mathrm{CH_{2}}}^{1}$ $_{\mathrm{CH_{3}}}^{1}$ $_{\mathrm{CH_{3}}}^{1}$ $_{\mathrm{CH_{3}}}^{1}$ $_{\mathrm{CH_{3}}}^{1}$ $_{\mathrm{CH_{3}}}^{1}$ $_{\mathrm{CH_{3}}}^{1}$

Методы получения алканов

Алканы, как правило, получают разделением природных смесей углеводородов. Лабораторных способов получения немного:

1. Гидрирование алкенов

$$C_n H_{2n} + H_2 \rightarrow C_n H_{2n+2}$$

2. Взаимодействие галогеналканов с активными металлами (Реакция Вюрца)

$$2 RBr + 2 Na \rightarrow R-R + 2 NaBr$$

3. Термическое декарбоксилирование солей органических кислот t

$$R-COONa + NaOH \rightarrow R-H + Na_2CO_3$$

Химические свойства алканов

Инертные вещества. Связи С-С и С-Н прочные, низкая поляризуемость → реакции по гомолитическому разрыву связей.

Окисление

1) горение (выделение большого количества теплоты Q)

$$C_nH_{2n+2} + (\frac{3n+1}{2})O_2 = nCO_2 + (n+1)H_2O + Q$$

 $n=1$ $CH_4 + 2O_2 = CO_2 + 2H_2O + Q$

2) каталитическое окисление (kat - соед. Mn)

П. Устойчивость к действию обычных окислителей (КМnO4, Вгг вода) Качественная реакция

СпН2п+2 не обесцвечивает Вг2 воду и р-р КМпО4

III. Крекинг (разложение при t°)

$$CH_4 \stackrel{t}{=} C + 2H_2$$

$$C_4H_{10} \stackrel{t}{=} C_2H_6 + C_2H_4$$

$$SMURE + C_2H_4$$

$$SMURE + C_2H_4$$

IV. Изомеризация (с "С" ≥ 4, t°=100°С, kat AlCl₃)

V. Реакции замещения

1) с галогенами
$$CH_4 + Cl_2 \xrightarrow{h_Y} CH_3Cl + HCl$$
 $h_Y - cвет, t^\circ$, цепной $CH_3Cl + Cl_2 \xrightarrow{\chi_{Aopucmulu}} CH_2Cl_2 + HCl$ свободнорадикаль—

свосодпорадикаль ный механизм $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl_{ метыреххлористый углерод}$

2) нитрование (реакция Коно— валова) t°, р. СН4 +HONO2 т СН3NO2 +H2O нитрометан

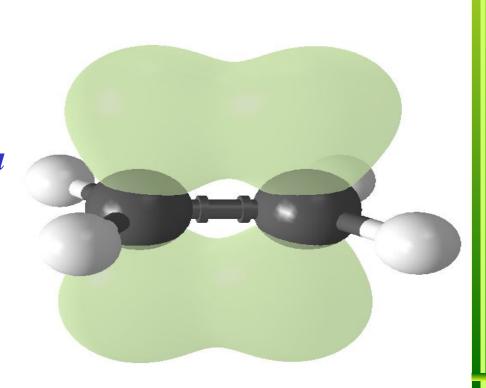
Реакция замещения

МЕХАНИЗМ РЕАКЦИИ НА ПРИМЕРЕ ХЛОРИРОВАНИЯ МЕТАНА:

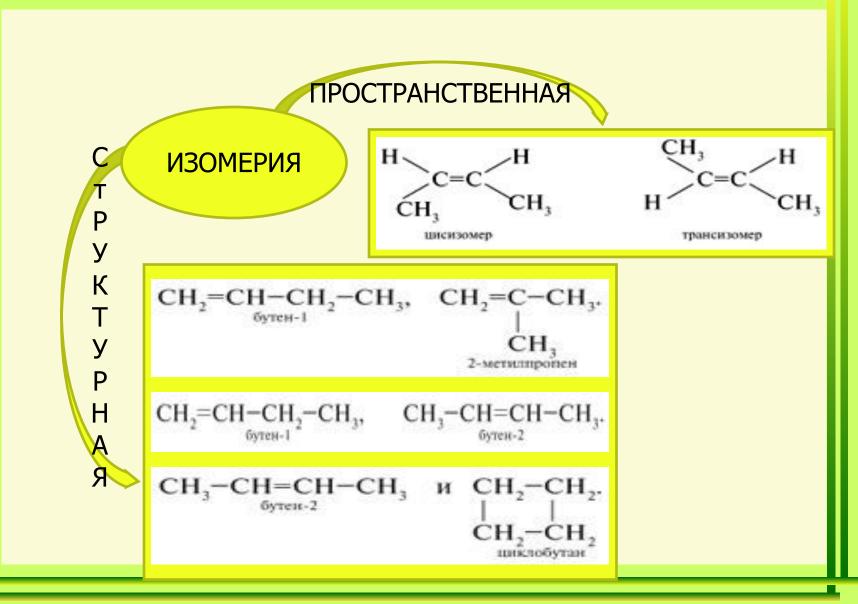
2. Cl· + CH₄
$$\longrightarrow$$
 HCl + •CH₃
3. CH₃• + Cl₂ \longrightarrow CH₃Cl + Cl• \longrightarrow poct year

Непредельные углеводороды

- Непредельные, или ненасыщенные, УВ содержат кратные углерод- углеродные связи (двойные, тройные)
- Непредельными называются углеводороды, в молекулах которых имеются атомы углерода, связанные между собой двойными или тройными связями. Их также называют ненасыщенными углеводородами, так как их молекулы имеют меньшее число атомов водорода, чем насыщенные.


п. 3.2 Алкены (олефины, этилены)

Непредельные углеводороды, в молекулах которых содержится одна двойная связь.


Общая формула гомологического ряда алкенов

 $C_{n}H_{2n}$. Гибридизация sp^{2}

Изомерия (структурная и пространственная: цис- и транс)

Изомерия и номенклатура

Методы получения алкенов

1. Дегидрирование алканов:

$$C_{n}^{C_{2}O_{3}, t}$$
 $C_{n}^{C_{1}O_{2}O_{3}} \rightarrow C_{n}^{C_{2}O_{3}} + C_{2}^{C_{2}O_{3}}$

2. Дегалогенирование дигалогенопроизводных:

$$R-CH(Hal)-CH_2-Hal + Zn \rightarrow R-CH=CH_2 + ZnHal_2$$

3. Дегидрогалогенирование галогенопроизводных:

спирт

$$R-CH_2-CH_2-Hal + KOH \rightarrow R-CH=CH_2 + KHal + H_2O$$

4. Дегидратация спиртов:

t,
$$H_2SO_4(\kappa)$$

 $R-CH_2-CH_2-OH \rightarrow R-CH=CH_2 + H_2O$

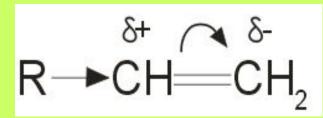
Химические свойства алкенов

1. Присоединение водорода:

$$H_2C = CH_2 + H_2 \rightarrow H_3C - CH_3$$

2. Присоединение галогенов:

$$H_2C = CH_2 + Cl_2 \rightarrow ClH_2C - CH_2Cl$$


3. Присоединение галогеноводородов:

$$H_2C = CH_2 + HBr \rightarrow H_3C - CH_2Br$$

4. Присоединение воды (реакция гидратации):

$$H_2C = CH_2 + H_2O \rightarrow H_3C - CH_2OH$$

Правило Марковникова В.В.

 Водород галогенводорода присоединяется к более гидрогенизированному атому углерода при двойной связи, а галоген – к менее гидрогенизированному.

$$H_3C$$
— CH = CH_2 + H — Br \rightarrow H_3C — CH — CH_3 $|$ Br

Реакция идет по ионному механизму.

Реакции окисления

• Горение:

$$H_2C = CH_2 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

• Окисление перманганатом калия:

• Частичное окисление:

$$2H_{2}C = CH_{2} + O_{2} \rightarrow 2H_{2}C - CH_{2}$$

$$O$$

Реакция полимеризации

Процесс соединения многих одинаковых молекул в более крупные молекулы называется реакцией полимеризации.

Алкадиены

Химические свойства алкадиенов

Химические свойства:

- Реакции присоединения
- 1) Галогенирование

- 2) Гидрирование: $CH_2 = CH CH = CH_2$ + $H_2 \xrightarrow{N_1 Pt. t} CH_3 CH = CH CH_3$ бутен-2
- 3) Гидрогалогенирование: $CH_2 = CH CH = CH_2 + HBr \rightarrow CH_2Br CH = CH CH_3$ 1-бромбутен-2
- П. Реакция полимеризации. Синтетические каучуки
 - 1) Дивиниловый (бутадиеновый) по способу Лебедева (Kat Na, 60 0 , p = 7 атм) \underline{n} CH $_{2}$ = CH – CH = CH $_{2}$ $\xrightarrow{kat.\ t}$ (– CH $_{2}$ – CH = CH – CH $_{2}$ –) \underline{n} дивиниловый каучук
 - 2) Изопреновый каучук
- n CH₂= C CH = CH₂ $\xrightarrow{\text{kat,t}}$ $(-\text{CH}_2 \text{C} = \text{CH} \text{CH}_2 -)_n$ CH₃
- 3) Хлоропреновый каучук
- $n CH_2 = C CH = CH_2 \xrightarrow{kat,t} (-CH_2 C = CH CH_2 -)_n$

Получение изопрена -

дегидрирование изопентана

Алкины. Ацетилен

Алкины – углеводороды, содержащие кроме σ-связей две π -связи (тройную связь) у одной пары углеродных атомов. Первый представитель этого класса веществ – ацетилен HC≡CH, в связи с чем алкины также называют ацетиленовыми углеводородами. Общая формула гомологического ряда алкинов $\mathbf{C_n} \mathbf{H_{2n-2}}$ (изомерны алкадиенам).

4.1. Номенклатура и изомерия алкинов

Названия ацетиленовых углеводородов образуются от названий соответствующих предельных углеводородов заменой окончания — ан на — ин.

Для алкинов характерны изомерия углеродного скелета и изомерия положения тройной связи:

$$CH \equiv C - CH_2 - CH_2 - CH_3$$
 Пентин-1 $CH_3 - C \equiv C - CH_2 - CH_3$ и пентин-2

Методы получения алкинов

Общий способ получения алкинов – отщепление двух молекул галогеноводорода от дигалогеналканов, которые содержат два атома галогена либо у соседних (а), либо у одного атома углерода (б), под действием спиртового раствора щелочи:

спирт

a) R-CH(Hal)-CH₂(Hal) + 2 KOH
$$\rightarrow$$
 R-C \equiv C-H + 2 KHal + 2 H₂O спирт

6)
$$R-CH_2-C(Hal)_2-CH_3 + 2 KOH \rightarrow R-C \equiv C-CH_3 + 2 KHal + 2H_2O$$

Ацетилен получают высокотемпературным крекингом метана 1500°

$$2 CH_4 \rightarrow H-C \equiv C-H + 3 H_{2'}$$

а также гидролизом карбида кальция, образующегося при высоких температурах из оксида кальция и углерода:

CaO +
$$3 \text{ C} \rightarrow \text{ CaC}_2 + \text{ CO}$$
; $\text{ CaC}_2 + 2 \text{ H}_2\text{O} \rightarrow \text{H-C} \equiv \text{C-H} + \text{Ca(OH)}_2$

Химические свойства ацетилена

1. Реакция галогенирования

CH≡CH + 2Br
$$_2$$
 \rightarrow CHBr $_2$ −CHBr $_2$ 1,1,2,2-тетрабромэтан

Алкины, так же как и алкены, обесцвечивают бромную воду.

2. Реакция гидрогалогенирования

Эти реакции, как правило, проводят в присутствии катализаторов. Для несимметричных алкинов на каждой стадии присоединение идет по правилу Марковникова:

AlBr
$$_3$$

CH $_3$ −C≡CH + HBr \rightarrow CH $_3$ −CBr=CH $_2$
2-бромпропен

$$CH_3-CBr=CH_2+HBr \rightarrow CH_3-CBr_2-CH_3$$
 2,2-дибромпропан

Химические свойства ацетилена (прод.)

3. Реакция гидратации (реакция Кучерова)

Вода присоединяется к алкинам с образованием неустойчивых продуктов — енолов, которые быстро изомеризуются в карбонильные соединения. Реакция протекает в присутствии сульфата ртути HgSO_{4} :

Реакция гидратации ацетилена по Кучерову имеет промышленное значение, в результате образуется уксусный альдегид:

Химические свойства ацетилена (прод.)

4. Реакция замещения

Атом водорода, находящийся у углерода в *sp*-гибридном состоянии, достаточно подвижен и способен замещаться на атомы металлов.
 Поэтому алкины, в отличие от алкенов, способны образовывать соли – ацетилениды:

CH≡CH + NaNH
$$_2$$
 → CH≡-CNa + NH $_3$ ацетиленид натрия

- HC≡CH + 2 [Ag(NH $_3$) $_2$]OH → Ag−C≡C−Ag↓ + 2 NH $_3$ + 2 H $_2$ O ацетиленид дисеребра
- Ацетилениды тяжелых металлов Ag, Cu, Hg представляют собой не истинные соли, а ковалентно построенные соединения, нерастворимые в воде, взрывоопасные в сухом виде.
 - **5.** Реакция гидрирования (→этан)
 - 6. Реакция тримеризации (→бензол)
 - 7. Реакция окисления (горения)