Свет и магнитные вещества: от эффекта Фарадея к сверхбыстрой оптомагнитной записи

Александра Калашникова

Лаборатория физики ферроиков ФТИ им. А. Ф. Иоффе РАН

kalashnikova@mail.ioffe.ru

Вечерняя школа МГТУ им. Ваумана 15 апреля 2019

Магнитные среды

Магнитные ионы в твердых

средах Взаимодействие между

ионами отсутствует:

•Парамагнетик

(в диамагнетиках магнитных ионов нет)

Что определяет свойства магнио-упорядоченных

Взаимодействие с внешним магнитным

$$U_H = -\mathbf{M}\mathbf{H}$$

полем

Обменное взаимодействие между спинами $\mathbf{M} = \frac{1}{V} \sum \mathbf{m}_i$

$$U_A = K \cos^2 \alpha + \dots$$

Магнитокристаллическ ая анизотропия

$$U_E = -J_{ij}\mathbf{m}_i\mathbf{m}_j$$

Магнитный порядок: •ферромагнитный •антиферромагнитны й •ферримагнитный³

Магнитная запись: плотность, скорость,

 Плотность записи: уменьшение размера одного бита Проблема стабильности намагниченности в малом объеме (суперпарамагнитный предел)

Нужен импульс магнитного поля, достаточный, чтобы превзойти сильную магнитную

анизотропию

Heat (by laser) Assisted Magnetic Recording увеличение плотности записи за счет лазерного нагрева

Магнитная запись: плотность, скорость,

Hard-drive

Heat (by laser) Assisted Magnetic Recording (Seagate, скоро на рынке?)

Магнитная запись: плотность, скорость,

6

Как можно переключить намагниченность?

7

C II Dack at al Science

Характерные времена магнитных взаимодействий

8

Взаимодействие света с магнитной средой

$$\Phi_{\rm int} = \varepsilon_{ij} E_i E_j^* + \alpha_{ijk} E_i E_j^* M_k + \dots$$

Изотропная среда Намагниченная вдоль

Эффект Фарадол

[M. Faraday, 1845]

Диэлектрическая восприимчиво вть: $\partial \mathbf{E} \partial \mathbf{E}$ $\begin{array}{c} \varepsilon_0 & -\alpha_{xyz}M_z \\ \alpha_{xyz}M_z & \varepsilon_0 \end{array}$ $\boldsymbol{\mathcal{E}}_0$ Собственные поляризации: $\mathbf{E} = E_0 \begin{pmatrix} 1 \\ +i \end{pmatrix}$ Магнитное двулучепреломление: $\Delta n_{\sigma^+-\sigma^-} \sim \alpha_{xvz}$

9

Магнитооптические эффекты

160 K

 $\alpha_{xvz}M_{z}$

120 K

145 K

Мощное средство для Зондирования магнитной **ОПравления** свойствами света

Магнитооптические эффекты Керра

Взаимодействие света с магнитной средой

$$\Phi_{\text{int}} = \varepsilon_{ij} E_i E_j^* + \alpha_{ijk} E_i E_j^* M_k + \beta_{ijkl} E_i E_j^* M_k M_l + \dots$$

Обрантый эффект Фарадея Индуцированная светом намагниченность

[Pitaevskii, Sov. Phys. JETP **12**, 1008 (1961) van der Ziel PRL. **15**, 190 (1965)]

$$\mathbf{M}_{z} \sim \boldsymbol{\alpha}_{xyz} \mathbf{E} \times \mathbf{E}^{*}$$

Давайте возьмем короткий импульс и магнитный материал

Как можно померить очень быстрые изменения чего-то?

Исторический пример

Эдвард Майбридж 1878 год 24 камеры

как померить динамику намагниченности, индуцированную фемтосекундным лазерным импульсом?

Magneto-optical spectroscopy setup with femtosecond temporal resolution @ FerroLab

+ temperature 4 K – 400 K
+ magnetic fields up to 2 T

[A. V. Kimel et al., Nature (2005)]

Фемтосекундный импульс лазерно-индуцированного «магнитного» поля до нескольких Тесла

Прецессия намагниченности, запускаемая лазерным импульсом!

Сверхбыстрый оптомагнитные эффекты

$$\Phi_{\text{int}} = \varepsilon_{ij} E_i E_j^* + i\alpha_{ijk} E_i E_j^* M_k + \beta_{ijkl} E_i E_j^* M_k M_l + \dots$$

Обратный эффект Фарадея

Обратный эффект Котона-Мутона

Сверхбыстрый обратный эффект Котона-Мутона

[A. M. Kalashnikova et al., PRL (2007), PRB (2008)]

Управление прецессией намагниченности линейно-поляризованными лазерными импульсами!

Возбуждение прецессии без поглощения?

[D. Bossini et al., PRB (2014)]

Микроскопический механизм обратный магнитооптических эффектов

Импульснове стимулированное раманосвкое рассеяние на магнонах

[A. M. Kalashnikova et al., PRL (2007), PRB (2008); V. N. Gridnev, PRB (2008)] Сверхбыстрые обратные магнитооптические эффекты:

✓Возбуждение прецессии намагниченности

✔Управление начальной фазой прецессии

✓Без поглощения

□Как их усилить?

□Как их локализовать?

ОК, но прецессии не достаточно....

Сверхбыстрый магнетим в металлах

Основано на поглощении света и быстром нагреве электронов

Сверхбыстрое размагничивание

ο προυνό Μότοπο

[E. Beaurepaire et al., PRL (1996)...Review:A. Kirilyuk et al., RMP (2010)]

Оптическое переключение намагниченности: первая демонстрация

Ferrimagnetic metallic alloy GdFeCo

[D. Stanciu et al., PRL (2007)]

Оптическое переключение намагниченности

одиночными импульсами

Как быстро это происходит?

[T. Ostler et al., Nature Comm. (2012)]

Одноимпульсная фемтосекундная фотография

Magneto-optical images with subpicosecond resolution

Динамика оптического переключения

намагниченности

(2012)]

Сверхбыстрая динамика спинов в <u>ферри</u>магнетике GdFeCo

Разная динамика сверхбыстрого размагничивания в ферримагнетике

[I. Radu et al., Nature [2011)]

К пониманию сверхбыстрого оптического переключения

намагниченности

J. Mentink et al., PRL (2012)]

Что дальше? поиск различных структур для переключения

[S. Mangin et al., Nature Mater. (2014)]

Что дальше?

микронные масштабы

2-µm структуры

[T. Ostler et al., Nature Comm. (2012)] ОК, но все еще очень большие

Что дальше? переключение наноразмерных областей

Поверхностный плазмонполяритон

Фокусировка излучения за пределами дифракционного предела!

Наноантенна на TbFeCo

[Tian-Min Liu et al., NanoLetters (2016)]

Что дальше? обойдемся без лазерного импульса...

Если лазерный импульс служит только «сверхбыстрым нагревателем» для электронов,

то давайте заменим его импульсом тока?

[Y. Yang et al., Science Adv. **3**: e1603117 (2017)] [**теория**: А. М. Kalashnikova, V. I. Kozub, PRB (2016)] Оптическое переключение намагниченности в ферримагнитных металлах RE-TM и родственных структурах

Происходит через сильно-неравновесное размагниченное состояние

Основано на сверхбыстром нагреве и разной динамике подрешеток

Позволяет достичь времен записи-считывания ~30 ps

Может быть реализовано в синтетических ферримагнетиках?

Может быть реализовано на микронном и нанометровом масштабе?

Сверхбыстрый оптомагнетизм: что дальше?

Ferromagnets

Antiferromagnets

Развитие теорий и численных методов: термодинамические подходы не работают!

Поиск и конструирование материалов Сверхбыстрое переключение с минимальным поглощением

Переключение не только лазерным импульсом (ТГц, ИК)...

Co-authors

Radboud University Nijmegen

K. VahaplarD. BossiniJ. MentinkJ. A. de Jong

D. Afanasiev

I. Razdolski A. V. Kimel A. Kirilyuk Th. Rasing

loffe Institute

V. N. Gridnev

- V. V. Pavlov
- L. A. Shelukhin

V. V. Pavlov

R. V. Pisarev

Paul Scherrer Institut

S. El Moussaoui
L. Le Guyader
E. Mengotti
L.J. Heyderman
F. Nolting

Moscow Power Engineering Institute A.M. Balbashov

Nihon University

A. Tsukamoto A. Itoh

The University of York

T.A. Ostler J. Barker R.F.L. Evans R.W. Chantrell

Instituto de Ciencia de Materiales de Madrid

U. AtxitiaO. Chubykalo-Fesenko

Institute of Magnetism, NASU

B.A. Ivanov

University of Konstanz

- S. Gerlach
- D. Hinzke
- U. Nowak

Спасибо за

Spin reorientation phase transition in REFeO₃

Spin reorientation (SR) phase transition

$$F(T) = K_0 + K_2(T)f_c^2 + K_4(T)f_c^4$$

Laser-induced spin-reorientation phase transition

38

Laser-induced magnetization dynamics in (Sm,Pr)FeO₃

т=90 К

Ultrafast laser-induced SR transftable controlled by a laser pulse polarization alone!

Mechanism of the laser-induced SR transition

How and where the information about the laser pulse polarization is stored?

Control of the laser-induced SR transition

Ultrafast inverse Faraday effect

Impulsive excitation of the <u>low amplitude</u> magnetization precession (<10°)

Phase of the precession is helicity-dependent

Degeneracy between two states is lifted dynamically

Control of the SR transition: temperature and fluence

Управление сверхбыстрым лазерно-индуцированным переход в диэлектрике REFeO₃

Возможно благодаря

- Импульсному возбуждению прецесии намагниченности
- Пикосекундному нагреву решетки

Фазовая диаграмма такого перехода определяется

- Поляризацией лазерного импульса
- Интенсивностью лазерного импульса
- Начальной температурой образца

ОК, но где же сверхбыстрая оптомагнитная запись?

Mechanism of the laser-induced SR transition

How and where the information about the laser pulse polarization is stored?

Controlling spin dynamics by laser pulses

All-optical reversal of magnetization in ferrimagnetic RE-TM metallic alloys

Controlling spin-reorientation phase transition in a dielectric REFeO_3

Controlling coherent and incoherent spin dynamics by steering the photo-induced energy flow

Spin reorientation phase transition in REFeO₃

Spin reorientation (SR) phase transition

$$F(T) = K_0 + K_2(T)f_c^2 + K_4(T)f_c^4$$

Laser-induced spin-reorientation phase transition

[A. V. Kimel et al., Nature (2004)]

Controlling the phase transition by a single laser pulse alone? How to lift the degeneracy?

Sample: rare-earth orthoferrite (Sm_{0.5}Pr_{0.5})FeO₃

Laser-induced magnetization dynamics in (Sm,Pr)FeO₃

[de Jong et al., PRL (2012)]

т=90 К

Ultrafast laser-induced SR transition controlled by a laser pulse polarization alone!

Mechanism of the laser-induced SR transition

How and where the information about the laser pulse polarization is stored?

Control of the laser-induced SR transition

Control of the SR transition: temperature and fluence

Controlling spin dynamics by laser pulses

Controlling spin-reorientation phase transition in a dielectric REFeO₃

Is realized by combining

- impulsive excitation of low-amplitude coherent spin precession
- picosecond lattice heating

The phase diagram is dependent on

- laser polarization
- laser fluence
- and initial sample temperature

Controlling spin dynamics by laser pulses

All-optical reversal of magnetization in ferrimagnetic RE-TM metallic alloys

Controlling spin-reorientation phase transition in a dielectric REFeO_3

Controlling coherent and incoherent spin dynamics by steering the photo-induced energy flow

On the validity of the Raman mechanism of the coherent magnon generation

Can the optical excitation of spin system be selective?

Transparent antiferromangnet KNiF₃

Approach: tuning the pump wavelength between transparency windows and absorption bands

Excitation of spin system: regime of finite absorption

We observe two contributions: from coherent and incoherent magnons

Mechanism of excitation of coherent and incoherent spin dynamics

Absorption leads to the excitation of noncoherent magnons mediated by excitation of phonons: excitation is nonselective

Excitation of spin system: regime of zero-absorption

Mechanism of excitation of coherent and incoherent spin dynamics in a transparent dielectric

Selective optical excitation of spins

Controlling spin dynamics by laser pulses

Controlling coherent and incoherent spin dynamics by steering the photo-induced energy flow

ISRS is confirmed to be the mechanism of coherent magnon generation

We demonstrated two pathways to excite noncoherent magnons

In a transparent dielectric the ISRS allows selective excitation of spin system

We formulated the criterion for the selective excitation regime

Развитие научных представлений о магнетизме

- <u>585 г. до н.э.</u> Документальное упоминание о магнетите Fe₃O₄.
- <u>IV I в. до н.э.</u> Попытки объяснения магнетизма на основе атомистической модели. <u>Демокрит, Эпикур,</u> Лукреций.
- <u>1600 г.</u> Гилберт "De Magnete". Земля как гигантский магнит.
- <u>1820 г</u>. Гаусс. Вебер. Система СГС. Единица магнитной индукции.
- <u>1820 г.</u> Эрстед. Воздействие тока на магнитную стрелку.
- <u>1820 г.</u> Ампер. Внутренние токи как причина ферромагнетизма.
- <u>1845 г.</u> Фарадей. Впервые произнес слова «магнитное поле».
- <u>1873 г.</u> Уравнения Максвелла (единица магнитного потока).

магнетизм в 20-м веке - горжество квантовои

TOODIAIA

Нобелевские премии в области магнетизма

- 1902 Н. А. Lorenz, Р. Zeeman Эффект Зеемана.
- 1920 С. Е. Guillaume Открытие инвара (Fe64Ni36) и элинвара.
- 1922 N. Bohr В классической физике магнетизма нет
- 1932 W. Heisenberg Обмен как спин-зависимое взаимодействие.
- 1943 О. Stern Открытие магнитного момента протона.
- 1944 І. І. Rabi Магнитные свойства атомных ядер.
- 1952 F. Bloch, E. M. Purcell Открытие ядерного магнитного резонанса.
- 1955 Р. Kusch Магнитный момент электрона.
- 1966 А. Kastler Намагничивание атомов светом.
- 1970 Н. Alfven, L. Néel Магнитная гидродинамика. Ферриты.
- 1985 К. von Klitzing Квантовый эффект Холла.
- 1994 В. Brockhouse, C. E. Shull Магнитная нейтронография.
- 1998 R. B. Laughlin, D. Tsui, H. Stormer. Дробный квантовый эффект Холла.
- 2003 P. Lauterbur, P. Mansfield Магнито-резонансная томография.
- 2007 Р. Grünberg, А. Fert Гигантское магнитосопротивление.

Магнетизм в России

- Э. Х. Ленц Ректор СПбГУ. Закон Ленца о направлении и силе наведенного тока (1833).
- <u>А. Г. Столетов</u> (1839-1896) Кривая магнитной проницаемости и восприимчивости железа (кривая Столетова). Основал (1874) физическую лабораторию в МГУ.
- Е.К. Завойский (Казань, 1944) Открытие электронного парамагнитного резонанса.
- <u>Л. Д. Ландау</u>, Е. М. Лифшиц, Л. П. Питаевский, А. Ф. Андреев, И. Е. Дзялошинский (ИФП)– Теория магнитных доменов. Уравнение магнитной динамики. Магнитоэлектричество, и др.
- <u>П. Л. Капица</u>, А. С. Боровик-Романов (ИФП) Сильные магнитные поля. Пьезомагнетизм. Динамика антиферромагнетиков, и др.
- <u>А. Д. Сахаров</u>, А. И. Павловский (Саров) Сверхсильные взрывные поля ~ 20 млн. Эрстед.
- <u>С. В. Вонсовский</u>, Ю. А. Изюмов, Е. А. Туров (Урал) Теория *s-d* обмена и др.
- Г.А.Смоленский (ФТИ) Новые магнитные материалы, прозрачные ферриты, и др.
- Н.С. Акулов, Е.И. Кондорский, К.П. Белов, и др. Магнетизм в МГУ.