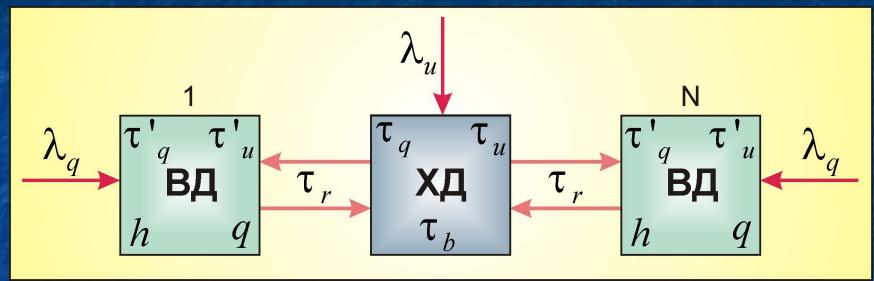
Анализ распределенных систем управления мобильными сетями связи

Руководитель: Мейкшан В. И.


Уровни управления сетью связи

Гипичная архитектура хранилища и витрины данных

Распределенная информационная система

- 🗎 интенсивность поступления запросов на обновления для центрального ХД
- λ_a интенсивность поступления поисковых запросов от пользователей ВД
- au_a и au'_a среднее время обработки поискового запроса в ХД и в ВД соответственно
- τ_u и τ_u' среднее время обработки запроса на обновление в ХД и в ВД соответственно
- au_b среднее время, требуемое серверу ХД на отправку одного сообщения для обновления ВД
- au время доставки сообщения, передаваемого между ХД и ВД
- 9 индекс когерентности данных

Хранилище данных

$$\lambda_{1} = \lambda_{u}$$

$$\lambda_{2} = hq\lambda_{u}$$

$$\lambda_{3} = n(1 - hf)\lambda_{q}$$

$$\tau_{b}$$

 W_{c} – среднее время пребывания запроса в очереди на обработку для XД

$$W_c = \frac{A_1\Theta_1 + A_2\Theta_2 + A_3\Theta_3}{1 - (A_1 + A_2 + A_3)}$$

$$A_1 = \lambda_1 \Theta_1 = \lambda_u \tau_u \qquad A_2 = \lambda_2 \Theta_2 = nhq\lambda_u \tau_b \qquad A_3 = \lambda_3 \Theta_3 = n(1 - hf)\lambda_q \tau_q$$

Витрина данных

$$\lambda'_1 = hf\lambda_q$$
 τ'_q $\beta \Delta'_2 = hf\lambda_u$ τ'_u

 $W_{_{W}}$ – среднее время пребывания запроса в очереди на обработку для ВД

$$W_{w} = \frac{A'_{1} \Theta'_{1} + A'_{2} \Theta'_{2}}{1 - (A'_{1} + A'_{2})}$$

$$A'_{1} = \lambda'_{1} \Theta'_{1} = hf\lambda_{q}\tau'_{q} \qquad \qquad A'_{2} = \lambda'_{2} \Theta'_{2} = hf\lambda_{u}\tau'_{u}$$

Среднее время, в течение которого пользователь ожидает ответа системы на свой запрос

$$R = hf[W_w + \tau'_q] + (1 - hf)[2\tau_r + W_c + \tau_q]$$

Среднее количество сообщений, передаваемых за единицу времени между ХД и ВД

$$M = 2n(1 - fh)\lambda_q + nhq\lambda_u$$

$$R^* = \frac{R}{\tau_q} \qquad M^* = M\tau_q$$

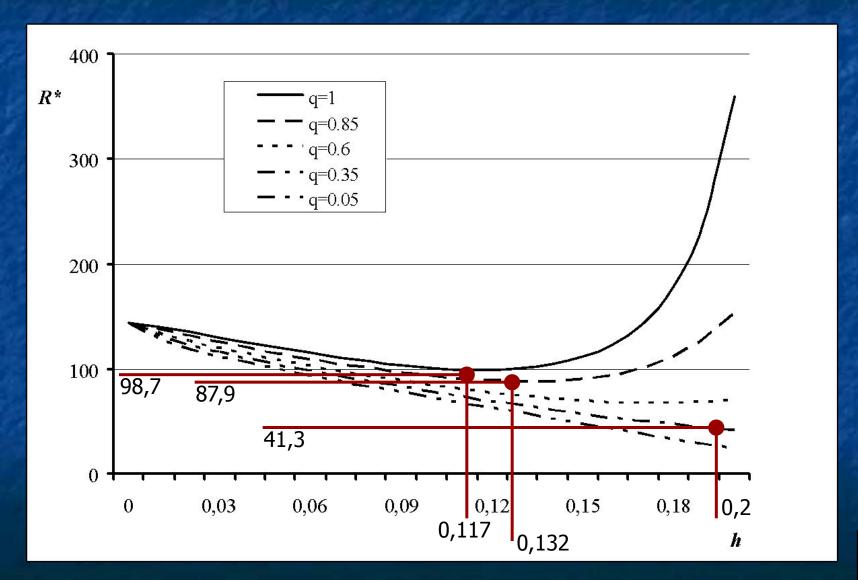
Значения исходных параметров

A_u	A_q	f	β	γ	ω	g
0,2	0,005	5	20	2	0,15	60

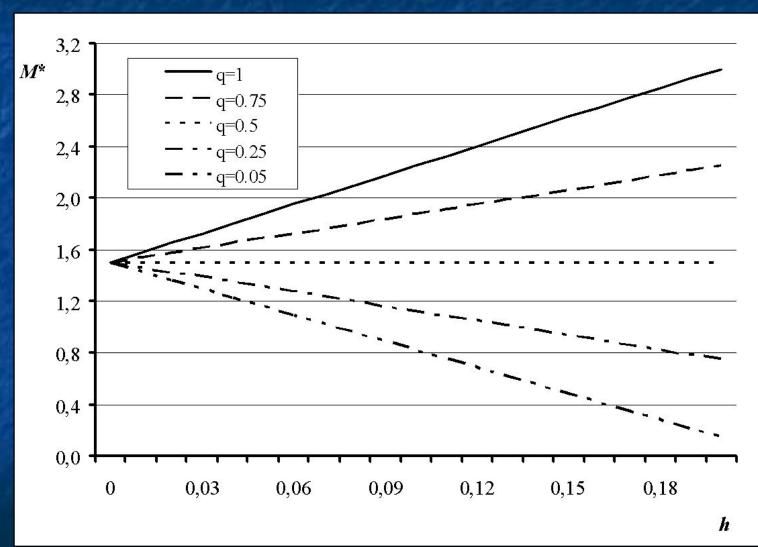
$$A_u = \lambda_u \tau_u^{}$$
 - загрузка сервера ХД обработкой запросов на обновление

$$A_q = \lambda_q au_q$$
 - загрузка сервера ХД поисковыми запросами от одной ВД

$$f \in [1;1/h]$$
 - дополнительный параметр


$$\beta = {\tau'}_q \, / \, {\tau_q} = {\tau'}_u \, / \, {\tau_u}$$
 - соотношение между быстродействием ВД и ХД

$$\gamma = \tau_u / \tau_q = \tau'_u / \tau'_q$$
 - соотношение между затратами времени на обработку поискового запроса и запроса на обновление


$$\omega = au_b \, / au_q$$
 - соотношение между временем отправки сообщения для обновления ВД и временем обработки поискового запроса в ХД

$$g = au_r / au_q$$
 - соотношение между временем доставки сообщения от ХД до ВД и временем обработки поискового запроса в ХД

Зависимость времени реакции распределенной системы от степени репликации данных (h) при различных значениях индекса когерентности данных (q)

Зависимость загруженности каналов связи (сетевого трафика) от степени репликации данных (h) при различных значениях индекса когерентности данных (q)

Спасибо за внимание