CSE 326: Data Structures Lecture #22

Mergeable Heaps

Henry Kautz Winter Quarter 2002

Summary of Heap ADT Analysis

- Consider a heap of N nodes
- Space needed: O(N)
	- Actually, O(MaxSize) where MaxSize is the size of the array
	- Pointer-based implementation: pointers for children and parent
		- Total space $= 3N + 1$ (3 pointers per node + 1 for size)
- FindMin: $O(1)$ time; DeleteMin and Insert: $O(log N)$ time
- Build Heap from N inputs: What is the run time?
	- N Insert operations = $O(N \log N)$
	- $-$ O(N): Treat input array as a heap and fix it using percolate down
		- *• Thanks, Floyd!*

Other Heap Operations

- Find and FindMax: O(N)
- DecreaseKey(P, Δ, H): Subtract Δ from current key value at position P and percolate up. Running Time: O(log N)
- IncreaseKey(P, Δ, H): Add Δ to current key value at P and percolate down. Running Time: O(log N)

– E.g. Schedulers in OS often decrease priority of CPU-hogging jobs

- Delete(P,H): Use DecreaseKey (to 0) followed by DeleteMin. Running Time: O(log N)
	- *– E.g.* Delete a job waiting in queue that has been preemptively terminated by user

But What About...

- Merge(H1,H2): Merge two heaps H1 and H2 of size $O(N)$.
	- *– E.g*. Combine queues from two different sources to run on one CPU.
	- 1. Can do $O(N)$ Insert operations: $O(N \log N)$ time
	- 2. Better: Copy H2 at the end of H1 (assuming array implementation) and use Floyd's Method for BuildHeap.

Running Time: O(N)

Can we do even better? (*i.e.* Merge in O(log N) time?)

Binomial Queues

- Binomial queues support all three priority queue operations Merge, Insert and DeleteMin in O(log N) time
- Idea: Maintain a collection of heap-ordered trees
	- *– Forest of binomial trees*
- Recursive Definition of Binomial Tree (based on height k):
	- Only one binomial tree for a given height
	- Binomial tree of height $0 =$ single root node
	- Binomial tree of height $k = B_k =$ Attach B_{k-1} to root of another B_{k-1}

- To construct a binomial tree B_k of height k:
	- 1. Take the binomial tree B_{k-1} of height k-1
	- 2. Place another copy of B_{k-1} one level below the first
	- 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)

 $B_0 B_1 B_2 B_3$

- To construct a binomial tree B_k of height k:
	- 1. Take the binomial tree B_{k-1} of height k-1
	- 2. Place another copy of B_{k-1} one level below the first
	- 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)
	- $B_0 B_1 B_2 B_3$

- To construct a binomial tree B_k of height k:
	- 1. Take the binomial tree B_{k-1} of height k-1
	- 2. Place another copy of B_{k-1} one level below the first
	- 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)

$B_0 B_1 B_2 B_3$

- To construct a binomial tree B_k of height k:
	- 1. Take the binomial tree B_{k-1} of height k-1
	- 2. Place another copy of B_{k-1} one level below the first
	- 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)

- To construct a binomial tree B_k of height k:
	- 1. Take the binomial tree B_{k-1} of height k-1
	- 2. Place another copy of B_{k-1} one level below the first
	- 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)

- To construct a binomial tree B_k of height k:
	- 1. Take the binomial tree B_{k-1} of height k-1
	- 2. Place another copy of B_{k-1} one level below the first
	- 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)

- To construct a binomial tree B_k of height k:
	- 1. Take the binomial tree B_{k-1} of height k-1
	- 2. Place another copy of B_{k-1} one level below the first
	- 3. Attach the root nodes
- Binomial tree of height k has exactly 2^k nodes (by induction)

Why Binomial?

• Why are these trees called binomial? – Hint: how many nodes at depth d?

Why Binomial?

• Why are these trees called binomial? – Hint: how many nodes at depth d? Number of nodes at different depths d for B_k = [1], [1 1], [1 2 1], [1 3 3 1], … Binomial coefficients of $(a + b)^k = k!/((k-d)!d!)$

Definition of Binomial Queues

Binomial Queue = "forest" of heap-ordered binomial trees

Binomial Queue Properties

Suppose you are given a binomial queue of N nodes

- 1. There is a unique set of binomial trees for N nodes
- 2. What is the maximum number of trees that can be in an N-node queue?
	- -1 node \Box 1 tree B_0 ; 2 nodes \Box 1 tree B_1 ; 3 nodes \Box 2 trees B_0 and B_1 ; 7 nodes \Box 3 trees B_0 , B_1 and B_2 ...
	- Trees B_0 , B_1 , ..., B_k can store up to $2^0 + 2^1 + ... + 2^k = 2^{k+1}$ -1 nodes = N.
	- Maximum is when all trees are used. So, solve for $(k+1)$.
	- Number of trees is \leq log(N+1) = O(log N)

Binomial Queues: Merge

- Main Idea: Merge two binomial queues by merging individual binomial trees
	- Since B_{k+1} is just two B_k 's attached together, merging trees is easy
- Steps for creating new queue by merging:
	- 1. Start with B_k for smallest k in either queue.
	- 2. If only one B_k , add B_k to new queue and go to next k.
	- 3. Merge two B_k 's to get new B_{k+1} by making larger root the child of smaller root. Go to step 2 with $k = k$ $+1.$

• Merge H1 and H2

- Merge H1 and H2
- H1: H2:

- Merge H1 and H2
- H1: H2:

• Merge H1 and H2

- Merge H1 and H2
- H1: H2:

• Merge H1 and H2

H1:

H2:

- Merge H1 and H2
- H1: $H2$: 6

- Merge H1 and H2
- H1:

- Merge H1 and H2
- H1: $H2$: $\overline{3}$

Binomial Queues: Merge and Insert

- What is the run time for Merge of two $O(N)$ queues?
- How would you insert a new item into the queue?

Binomial Queues: Merge and Insert

- What is the run time for Merge of two $O(N)$ queues?
	- O(number of trees) = $O(log N)$
- How would you insert a new item into the queue?
	- Create a single node queue B_0 with new item and merge with existing queue
	- Again, O(log N) time
- Example: Insert 1, 2, 3, ..., 7 into an empty binomial queue

Insert $1, 2, \ldots, 7$

Insert $1, 2, \ldots, 7$

 $\overline{2}$

Insert 1,2,…,7

Insert 1,2,…,7

Binomial Queues: DeleteMin

- Steps:
	- 1. Find tree B_k with the smallest root
	- 2. Remove B_k from the queue
	- 3. Delete root of B_k (return this value); You now have a new queue made up of the forest B_0 , B_1 , ..., B_{k-1}
	- 4. Merge this queue with remainder of the original (from step 2)
- Run time analysis: Step 1 is O(log N), step 2 and 3 are $O(1)$, and step 4 is $O(log N)$. Total time = $O(log N)$
- Example: Insert 1, 2, ..., 7 into empty queue and DeleteMin

Insert 1,2,…,7

DeleteMin

Implementation of Binomial Queues

- Need to be able to scan through all trees, and given two binomial queues find trees that are same size
	- Use array of pointers to root nodes, sorted by size
	- Since is only of length $log(N)$, don't have to worry about cost of copying this array
	- At each node, keep track of the size of the (sub) tree rooted at that node
- Want to merge by just setting pointers
	- Need pointer-based implementation of heaps
- DeleteMin requires fast access to all subtrees of root – Use First-Child/Next-Sibling representation of trees

Other Mergeable Priority Queues: Leftist and Skew Heaps

- Leftist Heaps: Binary heap-ordered trees with left subtrees always "longer" than right subtrees
	- Main idea: Recursively work on right path for Merge/Insert/DeleteMin
	- Right path is always short \Box has $O(log N)$ nodes
	- Merge, Insert, DeleteMin all have O(log N) running time (see text)
- Skew Heaps: Self-adjusting version of leftist heaps (*a la* splay trees)
	- Do not actually keep track of path lengths
	- Adjust tree by swapping children during each merge
	- O(log N) amortized time per operation for a sequence of M operations
- We will skip details... just recognize the names as mergeable heaps!

Coming Up

- Some random randomized data structures
	- Treaps
	- Skip Lists
	- FOR MONDAY: Read section on randomized data structures in Weiss. Be prepared, if called on, to explain in your own words why we might want to use a data structure that incorporates randomness!