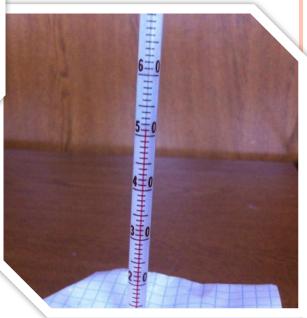

Нахождение теплоемкости металлов в опытах по теплообмену с водой

Редактировали ученики 2019Б класса МАОУ СОШ №15
Чакмина М., Валиуллин Д., Рзаева Э.
Учитель физики Грук В.Ю.
Учитель информатики Грук В.Ю. и Плохова И.Н.

г. Набережные Челны 2015

Использованные нами материалы:


Чайник электрический

Термометр

Цилиндры:

- -алюминиевые
- -железные
- -латунные

Фото эксперимента:

■ Если горячий цилиндр поместить в холодную воду, то вода будет нагреваться, получая количество $O = c \cdot m \cdot (t - t)$

 $Q_e = c_e \cdot m_e \cdot (t_e - t_o)$

А цилиндр будет охлаждаться, получая количество теплоты: $Q_{_{M}} = c_{_{M}} \cdot m_{_{M}} \cdot (t_{_{M}} - t_{_{O}})$

Процесс будет идти до тех пор, пока температура воды и металла не выровняются.

Чтобы легче считать, берем:

$$m_{_{B}} = m_{_{M}}$$
 $Q_{_{B}} = Q_{_{M}}$
 $c_{_{e}} \cdot m \cdot \Delta t_{_{e}} = c_{_{M}} \cdot m \cdot \Delta t_{_{M}}$
 $c_{_{M}} = \frac{c_{_{e}} \cdot \Delta t_{_{e}}}{\Delta t_{_{M}}}$

Результаты эксперимента:

22425		_		_	_	_
20195	Алюминий	Вода	Железо	Вода	Латунь	Вода
Macca	157	157	150	150	164	164
Начальная температура металла,°С	93		93		93	
Начальная температура воды, °С	23		23		22	
Конечная температура, °С	36		29		27	
Разность температур воды, °C	13		6		5	
Разность температур металла, °C	57		64		66	
Теплоемкость	958	4200	394	4200	318	4200

Вывод:

- Из таблицы оказалось, что большей удельной теплоёмкостью обладает алюминий
- □ Железо и латунь схожи по теплоёмкости
- Таким образом теплоёмкость алюминия выше, чем у железа и латуни, почти в 3 раза.

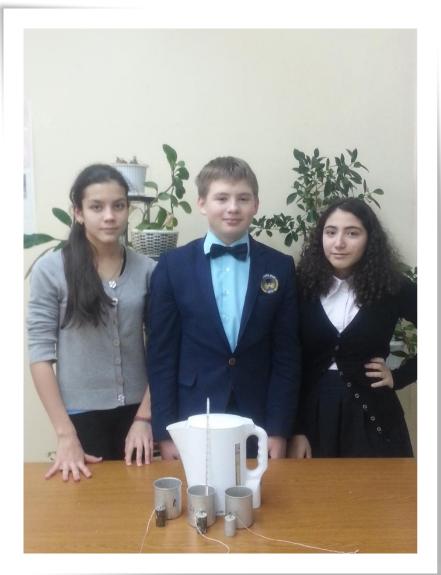
Мы получили значение удельной теплоёмкости алюминия:

Табличное значение:

$$c_a = 958 \frac{\text{Дж}}{\kappa e \cdot {}^{\circ}C}$$

$$920 \frac{\cancel{\square} \cancel{\cancel{3}} \cancel{\cancel{6}}}{\cancel{\kappa} \cancel{\cancel{6}} \cancel{\cancel{6}} \cancel{\cancel{6}}}$$

Мы получили значение удельной теплоёмкости железа:


Табличное значение теплоёмкости масла:

$$c_{_{\mathfrak{K}}} = 394 \frac{\mathcal{J}\mathcal{K}}{\kappa \varepsilon \cdot {}^{\circ}C}$$

$$c_{\rm m} = 460 \frac{\mu \pi c}{\kappa \epsilon \cdot {}^{\circ}C}$$

Вывод: Расхождение с табличными данными может получиться потому что

Спасибо за внимание!

