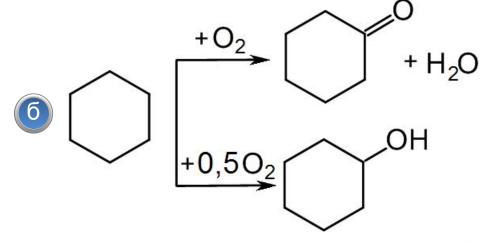


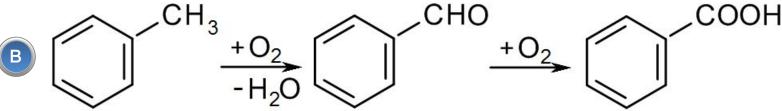
ПОЛНОЕ ОКИСЛЕНИЕ

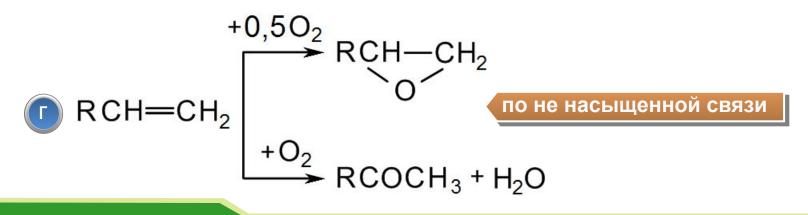
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

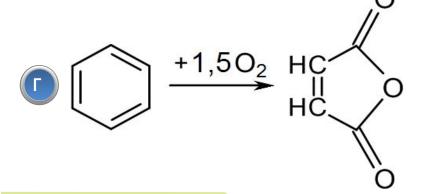
НЕПОЛНОЕ ОКИСЛЕНИЕ

І. Окисление без деструкции


по насыщенной связи







II. Окисление с деструкцией

(a)
$$RCH_2CH_3 + 3O_2 \longrightarrow R'COOH + CH_3COOH + 2H_2O$$

$$\begin{array}{c|c}
 & +2,5O_2 \\
 & +2,5O_2 \\
\hline
 & CH_2CH_2CH_2CH_2 + H_2O \\
\hline
 & COOH & COOH
\end{array}$$

B RCH=CHR
$$' \xrightarrow{+2O_2}$$
 RCOOH+RCOOH
CH₂=CH₂ + O₂ \longrightarrow 2HCHO

III. Окисление сопровождающееся связыванием исходных молекул

(a)
$$2RH \xrightarrow{+1,5O_2} ROOH + H_2O$$

ОКИСЛИТЕЛЬНЫЕ АГЕНТЫ

Молекулярный кислород

- воздух
- технический кислород
- азотокислородные смеси

Азотная кислота

HNO3 концентрацией 40-60%

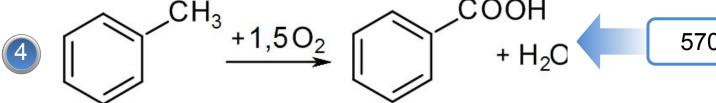
$$N_2O_3 + O_2 \longrightarrow 2HNO_3$$

- надкислоты RCOOOH
- гидропероксид водорода H2O2
- органические пероксиды ROOH

Пероксидные соединения

Тепловой эффект реакций окисления

 \bigcirc RCH₃+0,5O₂ \longrightarrow RCH₂OH


146-188 кДж/моль

 $RCH_2R + O_2 \longrightarrow RCOR + H_2O$

355 кДж/моль

 \bigcirc RCH₃ + O₂ \longrightarrow RCHO + H₂O

284-335 қДж/моль

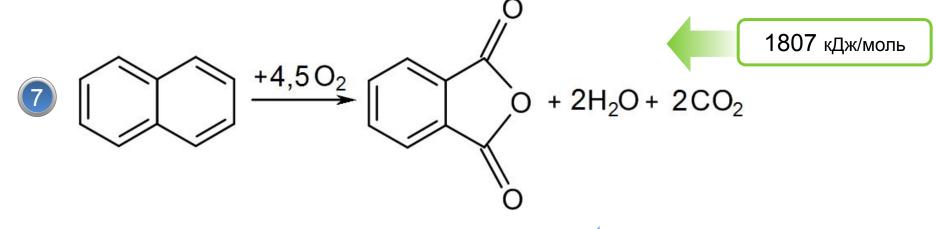
570 кДж/моль

 \bigcirc RCHO + 0,5O₂ \longrightarrow RCOOH

260-271 кДж/моль

6 RCH₂CH₂R +2,5O₂ \longrightarrow 2 RCOOH

1000 кДж/моль


Тепловой эффект реакций

8
$$CH_2 = CH_2 + 0.5O_2 \longrightarrow CH_3CHO$$

218 кДж/моль

9
$$CH_2 = CH_2 + 0,5O_2 \longrightarrow CH_2 - CH_2$$
 105 кДж/моль

$$\bigcirc$$
 RCH=CH₂+H₂O → RCH—CH₂ 210 кДж/моль

Тепловой эффект реакций окисления

218 кДж/моль

$$\begin{array}{ccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

Механизм образования продуктов окисления

Образование первых молекулярных продуктов

$$\circ$$
 R + O₂ \longrightarrow ROO

Образование вторичных гидропероксидов при окислении парафиновых углеводородов

$$R - C - R' + O_2 \longrightarrow R - C - R'$$

$$H_2$$

Образование третичных гидропероксидов при окислении изопарафиновых углеводородов

$$R = R'' + C = R' + C = R'$$

$$R = R' + C = R'$$

$$R = R'' + C = R'$$

$$R =$$

При окислении алкилароматики гидропероксидная группа занимает α-положение

$$CH_2$$
— CH_3 — СН— CH_3 — ООН α - гидропероксидэтилбензол

Образование спиртов

Образование кетонов

$$\begin{array}{c|c} OOH & OOH & O \\ \hline & | & +ROO \\ \hline & R-C-R' & +ROO \\ \hline & R-C-R' & +R-C-R' + HO \end{array}$$

Образование спиртов и кетонов из третичных гидропероксидов

$$R_3COOH \xrightarrow{+R_3C} R_3\dot{C}O + ROH \\ +R_3C \\ +R_3COH + R_3\dot{C}O$$

RCOR+R
$$R_3CO$$

$$+R_3CH$$

$$R_3COH + R_3C$$

Образование кетонов из спиртов

Механизм каталитического гомогенного окисления

$$\begin{array}{c} R - \overset{\mathsf{H}}{\mathsf{C}} - \mathsf{R}' + \mathsf{Co}(\mathsf{OCOCH}_3)_2 & \longrightarrow \\ & \mathsf{RCHOO} \cdot \mathsf{Co}(\mathsf{OCOCH}_3)_2 \\ & & \mathsf{R}' \\ & \longrightarrow \mathsf{R} - \mathsf{C} - \mathsf{R}' + \mathsf{OHCo}(\mathsf{OCOCH}_3)_2 \\ & & \mathsf{R}' \\ & & \mathsf{OO} \end{array}$$

Механизм газофазного термического гомогенного окисления

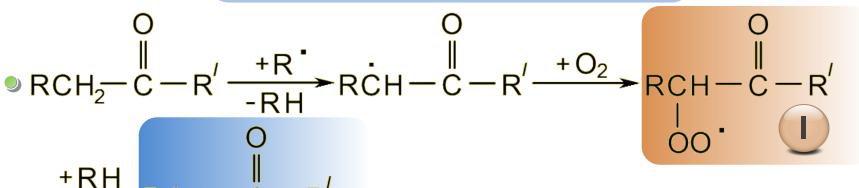
Механизм газофазного термического гомогенного окисления

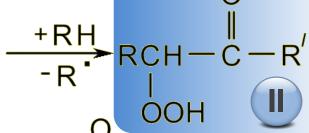
$$CH_3CH_2\dot{C}H_2 \xrightarrow{+O_2} CH_3CH_2CH_2OO^{\bullet}$$
 $CH_3CH_2CH_3 \xrightarrow{+RO^{\bullet}} CH_3\dot{C}HCH_3 \xrightarrow{+O_2} CH_3CHCH_3$
 $CH_3\dot{C}HCH_3 \xrightarrow{+O_2} CH_3CHCH_3$
 $CH_3\dot{C}HCH_3 \xrightarrow{+CH_2O} CH_3CH_2OH^{\bullet}+R^{\bullet}$
 $CH_3CH_2O \xrightarrow{+RH} CH_3CH_2OH^{\bullet}+R^{\bullet}$
 $CH_3CH_2O \xrightarrow{+RH} CH_3OH^{\bullet}+R^{\bullet}$

Образование карбоновых кислот

$$\begin{array}{c|c} CH_3 & CH_2OOH \\ \hline + O_2 & \end{array}$$

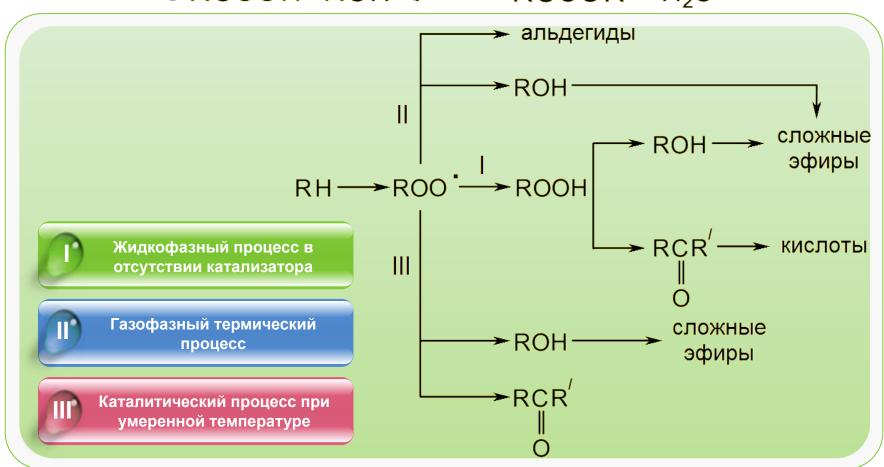
(a)
$$RCH_2-CH_2R \xrightarrow{+2O_2} RCOOH + RCOOH$$


$$ODD → OODD → O$$



Механизм образования кислот с деструкцией

$$\mathbb{R} RCH - \mathbb{C} - \mathbb{R}' \longrightarrow \mathbb{R} COOH + \mathbb{R}'CO'$$



Побочные продукты окисления

Кинетика гомогенного окисления

Зарождение цепи

- Добавление в реакционную смесь инициаторов:
 для газовой фазы HNO3, NO, HBr
 для жидкой фазы нестабильные гидропероксиды
 - <mark>Воздействие высокой температуры: RH + O₂ ——→ R " + HOO"</mark>
 - **Использование катализаторов**

Вырожденное разветвление цепи

- \bigcirc Газофазные реакции: RCHO + O₂ \longrightarrow RC=O + HOO
- Жидкофазные реакции: 2ROOH ——→ ROO "+ RO "+ H₂O
- Каталитические реакции: ROOH + Mn(OCOCH₃)₂ -----

$$\rightarrow$$
 RO + MnOH(OCOCH₃)₂

Кинетика гомогенного окисления

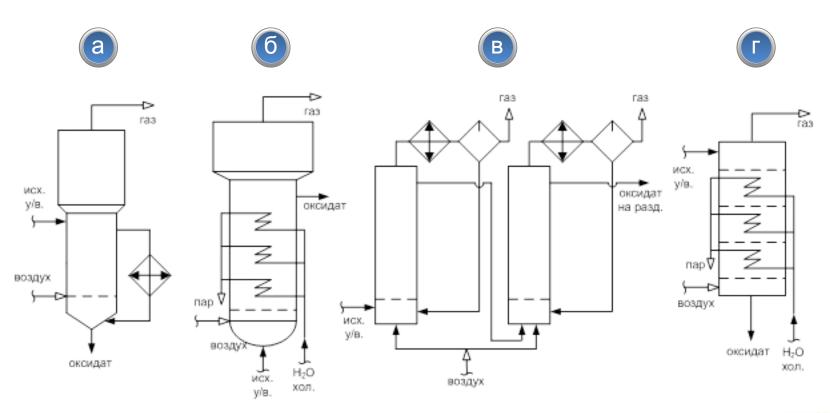
Развитие цепи

- без участия катализатора
- с участием катализатора определяющим состав продуктов

- Газофазный процесс при столкновении радикалов со стенкой
- Жидкофазный процесс:

Обрыв цепи

Кинетика гомогенного окисления



Реакторы жидкофазного окисления

Окисление парафиновых углеводородов

Получение высших спиртов

Получение карбоновых кислот

Окисление парафиновых углеводородов в газовой фазе

$$CH_4 \xrightarrow{+O_2} HCHO \xrightarrow{+0,5O_2} HCOOH \xrightarrow{+0,5O_2} CO_2 + H_2O$$

Окисление пропана

Термическое окисление н-парафинов в спирты

Способы получения ВЖС

- Восстановление кашалотового жира
- Восстановление метиловых эфиров СЖК
- Выделение из вторичных неомыляемых в производстве СЖК
- Прямое окисление парафинов молекулярным кислородом (Метод Башкирова)

Пути использования ВЖС

- Производство ПАВ
- Синтез присадок
- В растворителях
- В бумажной, текстильной и кожевенной промышленности
- Производство пластификаторов

Прямое окисление н-парафинов (Метод Башкирова)

MEXAHU3M

$$R^{\bullet} \xrightarrow{+O_2} ROO^{\bullet} \xrightarrow{+RH} ROOH + R^{\bullet}$$

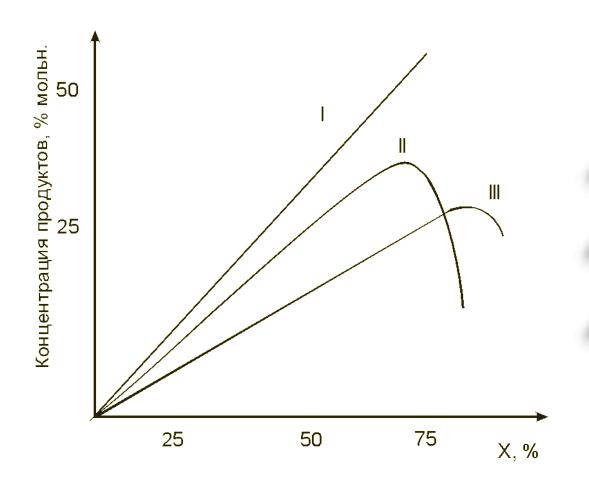
$$RO^{-} + RH \rightarrow ROH + R^{-}$$

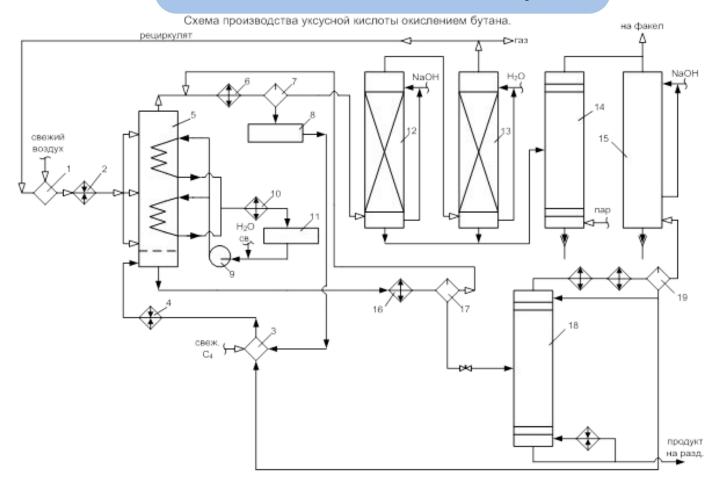
Каталитическое окисление парафинов до кислот

Жидкофазное окисление бутана

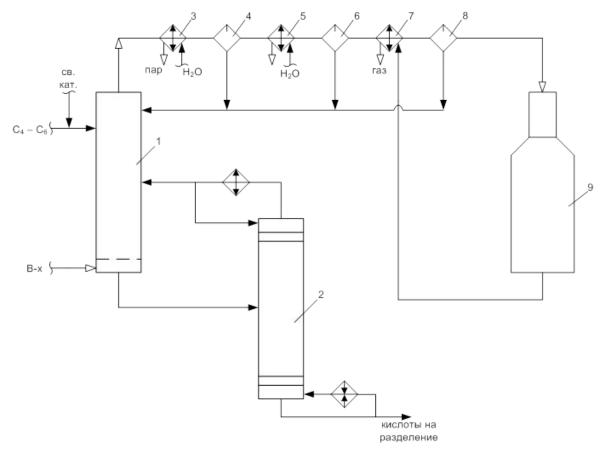
$$C_{4}H_{10} + O_{2} \xrightarrow{I} 2CH_{3}COOH$$

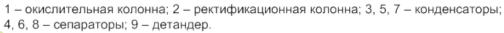
$$C_{4}H_{10} + O_{2} \xrightarrow{II} CH_{3}COC_{2}H_{5} + H_{2}O$$


$$C_{4}H_{10} + O_{2} \xrightarrow{III} CH_{3}OCOC_{2}H_{5} + H_{2}O$$

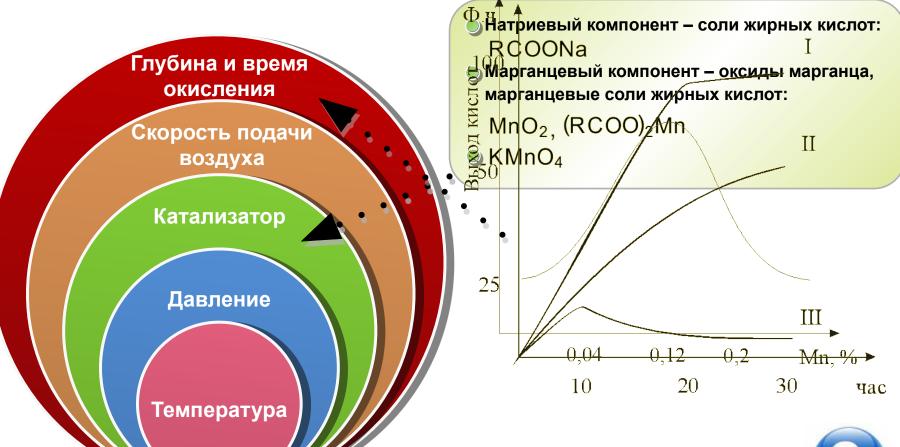


Технологическая схема окисления бутана

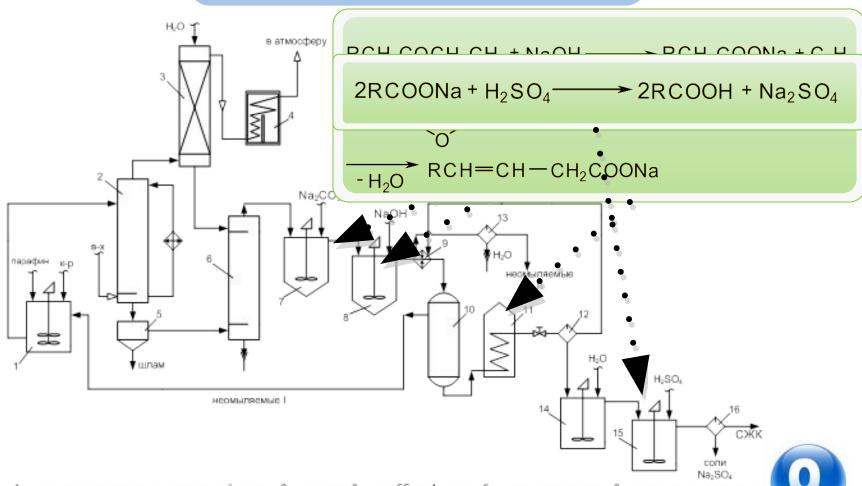




Технологическая схема окисления широкой бензиновой фракции С₅-С8



Окисление твердого парафина в СЖК



Технологическая схема производства СЖК

1 – узел приготовления окислительной шихты; 2 – реактор; 3 – скруббер; 4 – печь; 5 – шламоотделитель; 6 – промывная колонна; 7, 8 - омылители; 9 - теплообменник; 10 - автоклав; 11 - трубчатая печь; 12, 13, 16 - сепараторы; 14, 15 - смесители.

Недостатки производства СЖК

- Образование малоценного Na₂SO₄
- Периодичность
- Потеря низших кислот с промывной водой

- Перевод на непрерывный процесс
- Использование углекислого газа для перевода мыла в кислоты, выделяющегося в процессе:

RCOONa +
$$CO_2 \xrightarrow{+ H_2O}$$
 RCOOH + NaHCO₃

- Улавливание низших кислот
- Использование малоценного кубового остатка C>20

Основные реакции

Окисление алкилбензолов до гидропероксидов с их последующим кислотным разложением в фенолы и кислоты

Окисление метилбензола в кислоту

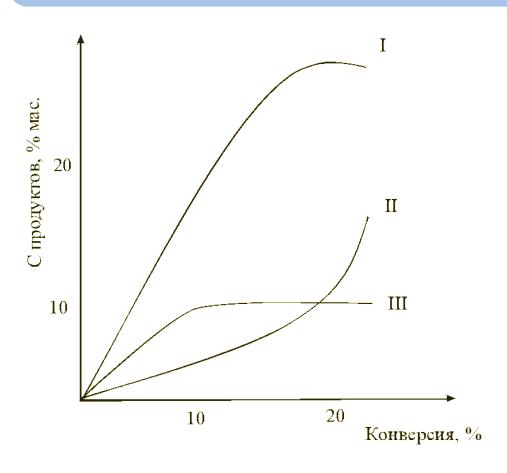
2
$$C_6H_5CH_3 \xrightarrow{+O_2} C_6H_5CHO \longrightarrow C_6H_5COOH$$

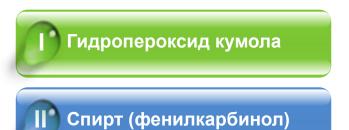
Механизм окисления кумола

$$C_{6}H_{5}CH(CH_{3})_{2} \xrightarrow{+ROO} C_{6}H_{5}C(CH_{3})_{2} \xrightarrow{+O_{2}} C_{6}H_{5}COO(CH_{3})_{2}$$

$$C_{6}H_{5}C(CH_{3})_{2} + CH_{3}O$$

Присоединение гидропероксидной группы с образованием побочных продуктов (ацетофенон и фенилкарбинол)


$$C_6H_5C(CH_3)_2 + C_6H_5\dot{C}(CH_3)_2 \longrightarrow C_6H_5C(CH_3)_2 + C_6H_5C(CH_3)_2$$
OOH
OH
OOH



Накопление продуктов окисления кумола в реакционной массе

Механизм разложения гидропероксида до фенола и ацетона

$$\begin{array}{c} \bullet \quad C_6 H_5 C (CH_3)_2 \xrightarrow{+H^+} C_6 H_5 C (CH_3)_2 \xrightarrow{-H_2 O} C_6 H_$$

$$\longrightarrow C_6 H_5 O - C(CH_3)_2 \xrightarrow{+H_2O} C_6 H_5 O - C - (CH_3)_2 \xrightarrow{-} C_6 H_5 O - C - (CH_5)_2 \xrightarrow{-} C$$

$$C_6H_5$$
 C_6H_5 C

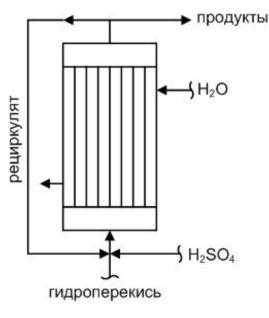
Катализ побочных продуктов

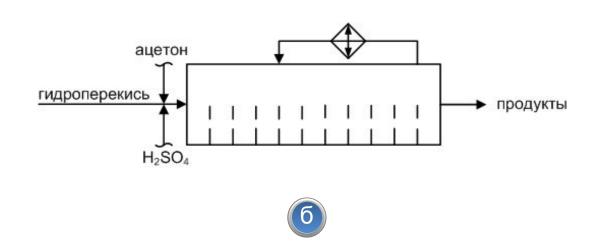
$$\bigcirc C_6 H_5 C(CH_3)_2 \xrightarrow{+H^+} C_6 H_5 C(CH_3)_2 \xrightarrow{-H_2 O} C_6 H_5 C(CH_3)_2$$

$$\bigcirc C_6 H_5 C(CH_3)_2 \xrightarrow{-H_2 O} C_6 H_5 C(CH_3)_2$$

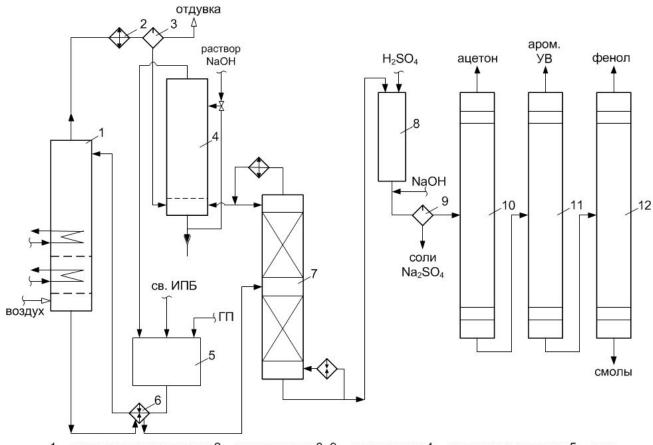
$$\bigcirc C_6 H_5 C(CH_3)_2 \xrightarrow{-H_2 O} C_6 H_5 C(CH_3)_2$$

$$CH_3$$
 $-H^+$ $C_6H_5C = CH_2$ стирол
$$-H^+ C_6H_5OH$$
 $-H^+$ $C_6H_5 - C - C_6H_5OH$
 $-H^+$ $C_6H_5 - C - C_6H_5OH$
 $-H^+$ C_6H_3



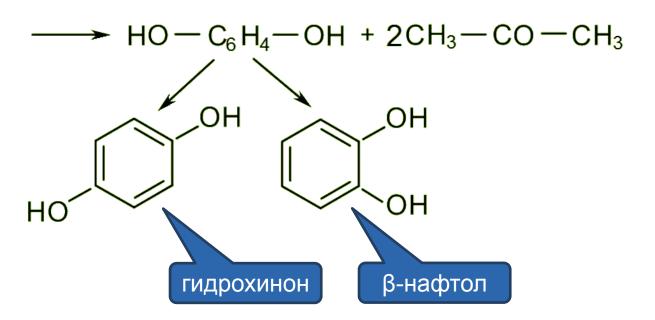


Реакционные узлы разложения гидроперекиси



Технологическая схема кумольного метода получения фенола и ацетона

1 – окислительная колонна; 2 – холодильник; 3, 9 – сепараторы; 4 – промывная колонна; 5 – узел приготовления окислительной шихты; 6 – теплообменник; 7 – узел укрепления; 8 – узел кислотного разложения; 10, 11, 12 – ректификационные колонны.



Получение гидрохинона

$$(CH_3)_2CH-C_6H_4-CH(CH_3)_2\xrightarrow{+2O_2}(CH_3)_2C-C_6H_4-C(CH_3)_2\xrightarrow{+H^+}$$

OOH OOH

резорцин

Получение резорцина

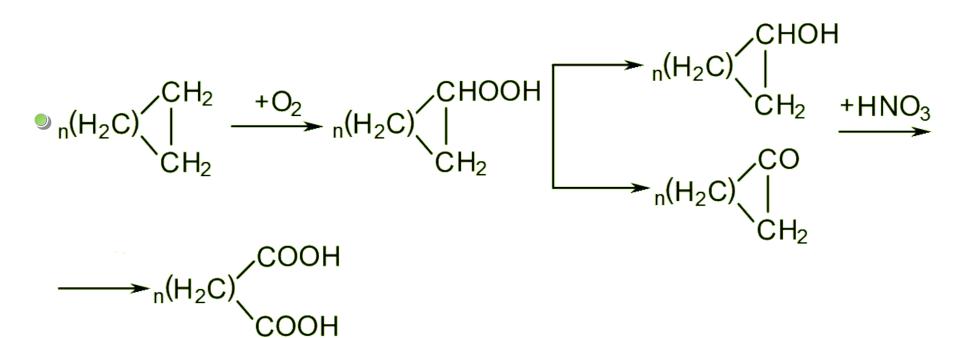
CH(CH₃)₂ +O₂

$$OOH$$

$$C(CH_3)_2$$

$$+H^+$$

$$OH$$


$$+H_3C-C-CH_3$$

Назначение процесса

1.

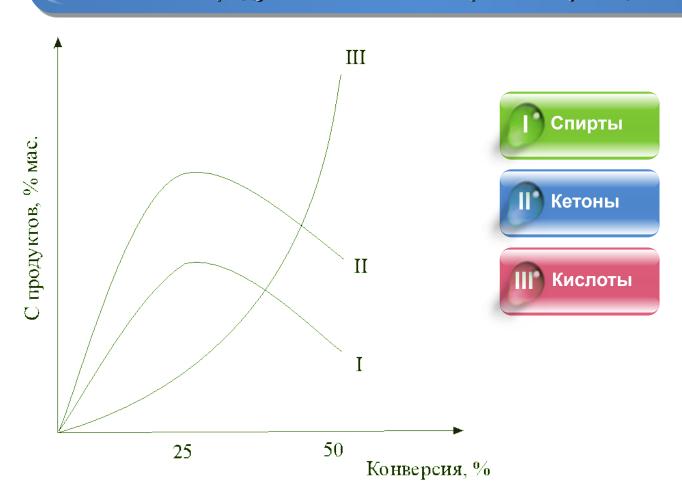
Получение циклогексанона

2.

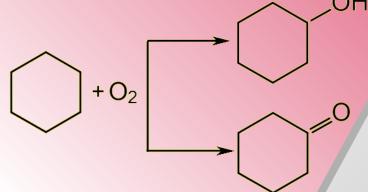
Получение адипиновой кислоты

Получение полиамида из кетонов

$$_{n}(H_{2}C)$$
 $\stackrel{CO}{|}$
 $_{n+1}(H_{2}C)$
 $\stackrel{CO}{|}$
 $_{n+1}(H_{2}C)$
 $\stackrel{CO}{|}$
 $_{n+1}(H_{2}C)$
 $\stackrel{CO}{|}$
 $_{n+1}(H_{2}C)$
 $\stackrel{CO}{|}$
 $_{n+1}(H_{2}C)$
 $\stackrel{CO}{|}$
 $\stackrel{CO}{|}$
 $\stackrel{CO}{|}$
 $\stackrel{CO}{|}$
 $\stackrel{CO}{|}$
 $\stackrel{CO}{|}$


Получение капрона из адипиновой кислоты

Накопление продуктов окисления нафтенов в реакционной массе



Окисление нафтеновых в спирты и кетоны

1.

Каталитическое окисление нафтеновых C5-C6

2.

Термическое окисление нафтеновых C8-C12

Получение дикарбоновых кислот

$$\begin{array}{c|c} OH \\ +HNO_3 \\ \hline \end{array} \begin{array}{c} O \\ +NO \\ \hline \end{array} \begin{array}{c} O \\ +HNO_3 \\ \hline \end{array}$$

Окисление альдегидов

Окисление уксусного альдегида до уксусной кислоты

Образование побочных продуктов

CH₃CHO
$$\begin{array}{c}
+1,5O_2 \\
+2CH_3COOH \\
+1,5O_2 \\
+1,5O_2 \\
+1,5O_2 \\
-2HCOOH
\end{array}$$
CH₃CHO
$$\begin{array}{c}
+1,5O_2 \\
+1,5O_2 \\
-2HCOOH
\end{array}$$
CH₃COO₂ + 0,5H₂O
$$\begin{array}{c}
+1,5O_2 \\
-2CO_2 + 2H_2O
\end{array}$$

Совмещенный синтез уксусной кислоты и уксусного ангидрида

Получаемые продукты

Получение акролеина, метакролеина и их кислот

1
$$CH_2 = CH - CH_3 \xrightarrow{+O_2} CH_2 = CH - CHO$$

 $+0,5O_2 \longrightarrow CH_2 = CH - COOH$

Получение акрилонитрила

$$2$$
 RCH₃ + NH₃ +1,5O₂ \longrightarrow RCN + 3H₂O

Получаемые продукты

Окисление ароматических углеводородов

Получение α-оксидов

$$\bigoplus$$
 CH₂=CH₂+0,5O₂ → CH₂-CH₂

Катализ гетерогенно-каталитического окисления

Механизм гетерогенно-каталитического окисления

Сорбция кислорода

$$Ag + O_2 \longrightarrow Ag - O - O \xrightarrow{+Ag} 2Ag - O$$

Сорбция углеводородов

$$Me^{(n+1)^{+}}$$
 + CH_2 = CH - CH_3 \longrightarrow $Me^{n^{+}}$ - CH_2 - CH - CH_3

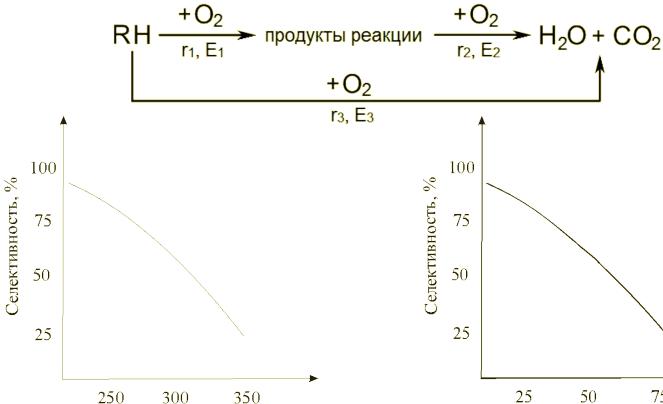
Взаимодействие сорбированных реагентов

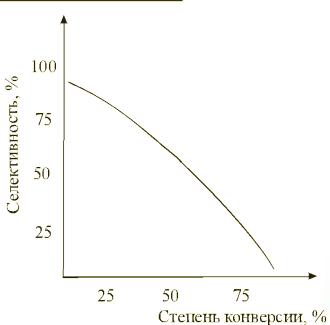
$$\bigcirc$$
 Ag $-O-O$ + CH₂=CH $-$ CH₃ \longrightarrow Ag $-O-O-$ CH₂-CH $-$ CH₃

$$\rightarrow$$
 H₃C - CH - CH₂ + Ag - O

$$O$$
 CH₂=CH-CH₃ + 2KO $\xrightarrow{-2K}$ CH₂=CH-CHO + H₂O

$$2K + O_2 \longrightarrow 2KO$$

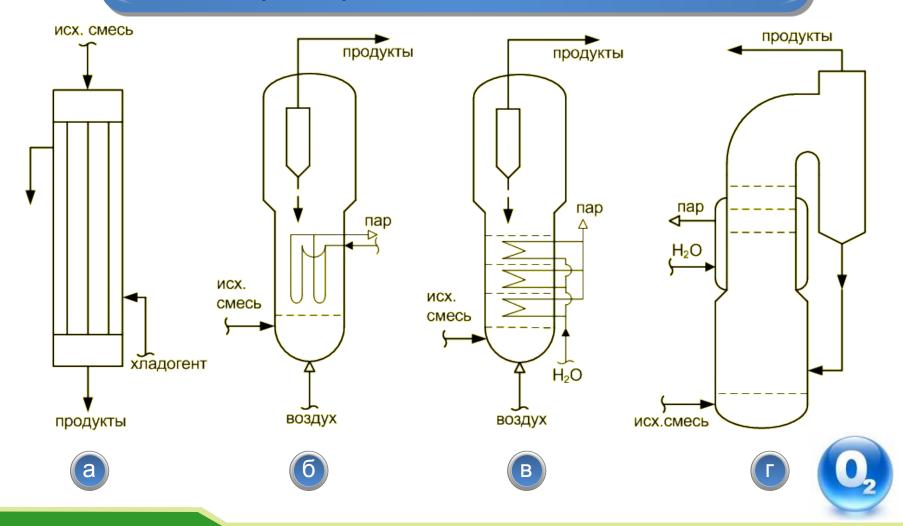




Селективность гетерогенно-каталитического окисления

Упрощенная схема гетерогенно-каталитического окисления

Температура



Реакторы гетерогенно-каталитического окисления

Окисление олефинов по насыщенному углеродному атому с сохранением двойной связи

Получаемые продукты

$$CH_2 = CH - CH_3 \xrightarrow{+O_2} CH_2 = CH - CHO$$
 $CH_2 = CH - CHO \xrightarrow{+0,5O_2} CH_2 = CH - COOH$

акролеин

$$CH_2 = CH - CHO \xrightarrow{+0.5O_2} CH_2 = CH - COOH$$

акриловая кислота

$$_{n}CH_{2}=CH-COOCH_{3}\longrightarrow \{CH_{2}=CH\}_{n}$$
 $COOCH_{3}$

полиметилметакрилат (оргстекло)

Cu₂O (0,1-1,5%) на Al₂O₃ или бронзе

КАТАЛИЗАТОРЫ

Bi2O3·MoO3·P2O5, промотор - теллур

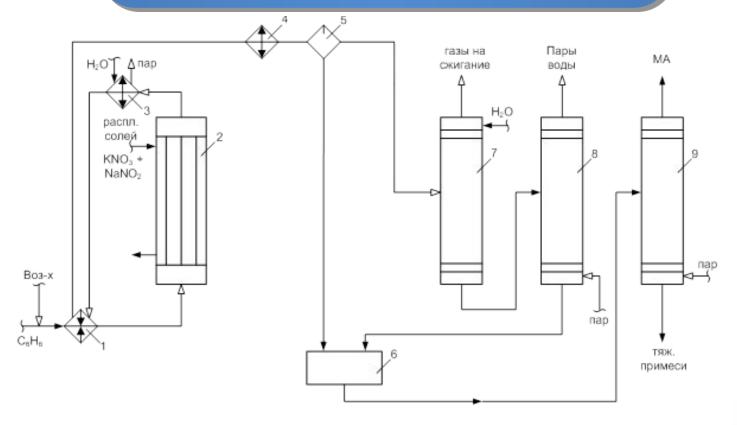
Производство малеинового ангидрида

Парофазное окисление бензола

Парофазное окисление бутенов или бутанов

$$C_4H_{10} \xrightarrow{+0.5O_2} C_4H_8 \xrightarrow{+3O_2} HC \xrightarrow{O}$$

Катализатор: 3,8% V2O5 + 1,6% MoO3 на Al2O3



Технологическая схема парофазного окисления бензола в малеиновый ангидрид

^{8 -} отпарная колонна; 9 - ректификационная колонна.

Производство оксида этилена

В производстве гликолей:

$$H_2O + CH_2 - CH_2 - CH_2OH$$

В производстве целлозольвов:

ROH +
$$CH_2$$
— CH_2 — CH_2 OH

3 В производстве акрилонитрила:

$$+CN + CH_2 - CH_2 - H_2O$$
 $CH_2 = CHCN$

В производстве ПАВ

(5) В производстве этаноламинов:

$$NH_3 + CH_2 - CH_2 - CH_2NH_2$$

Производство оксида этилена: методы получения

1) Хлорный метод

$$CH_2$$
= CH_2 + CI_2 + H_2O \longrightarrow $CICH_2$ - CH_2OH $\xrightarrow{+Ca(OH)_2}$ \longrightarrow CH_2 - CH_2 + $CaCI_2$ + H_2O

2 Прямое окисление этилена

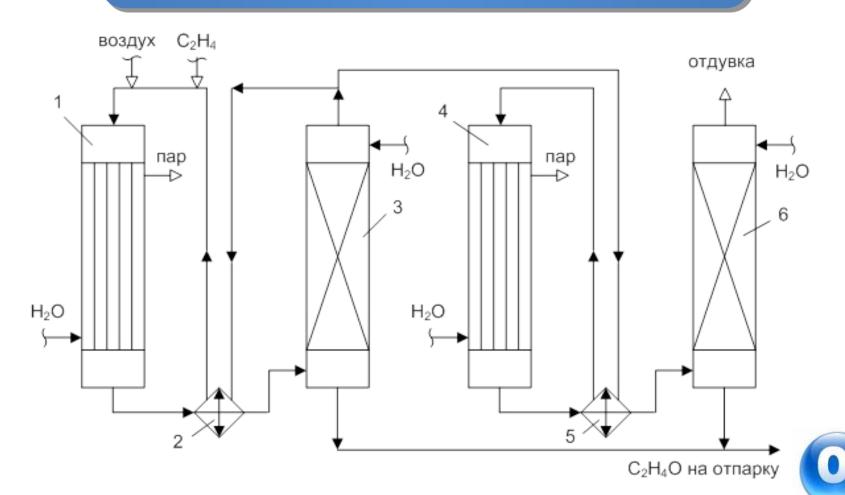
$$CH_2 = CH_2 + 0.5O_2 \longrightarrow CH_2 - CH_2$$

Побочные реакции

$$CH_2 = CH_2 \xrightarrow{+O_2} CH_2 \xrightarrow{+O_2} CO_2 + CO$$

$$E_{C_2H_4O} = 63\hat{e}\ddot{A}\alpha / \hat{\imath}\hat{\imath}\ddot{e}\ddot{u} ,$$

$$E_{CO_2} = 84\hat{e}\ddot{A}\alpha / \hat{\imath}\hat{\imath}\ddot{e}\ddot{u}$$



Технологическая схема производства оксида этилена

Синтезы на основе оксида углерода

Реализованы в следующих направлениях

1.

Синтезы непосредственно из СО и Н₂ с получением смеси углеводородов и кислородсодержащи х соединений

2.

Процессы оксосинтеза или гидроформилирова ния, процессы карбоксилирования, где помимо синтезгаза используются олефины

Синтезы на основе оксида углерода

Синтезы непосредственно из СО и Н2

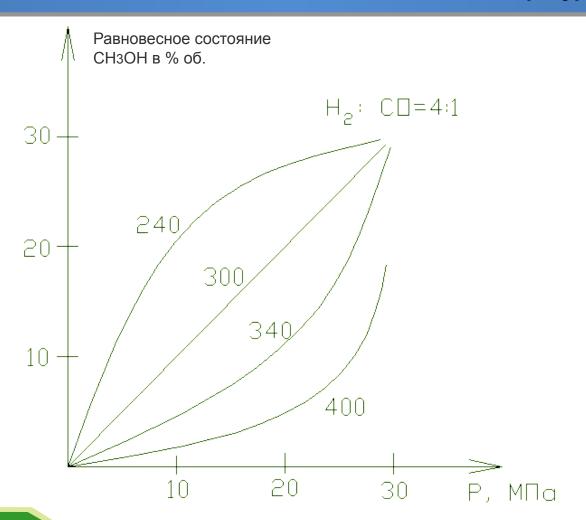
Синтез смеси углеводородов на никелевом катализаторе

$$CO + 3H_2 \longrightarrow CH_4 + H_2O$$

б Синтез смеси углеводородов на оксиде железа катализаторе

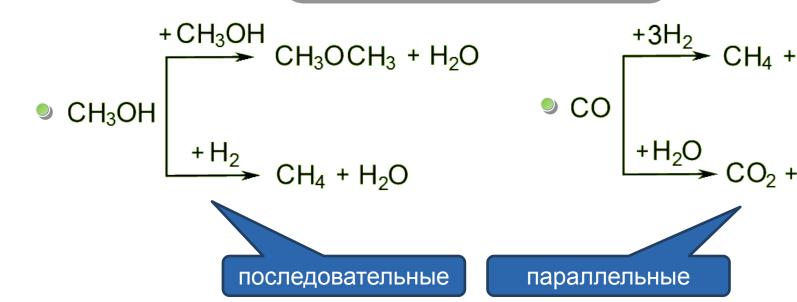
$$2nCO + n+1H_2 \longrightarrow C_nH_{2n+2} + nCO_2$$

В Синтез кислородсодержащих углеводородов на оксиде цинка катализаторе


Синтезы на основе оксида углерода

Зависимость выхода метанола от давления и температуры

Синтезы на основе оксида углерода



Механизм синтеза метанола

$$K + CO \longrightarrow K ::: C = O \xrightarrow{+ H_2} K ::: CH - OH \xrightarrow{+ H_2} K + CH_3OH$$

Побочные реакции

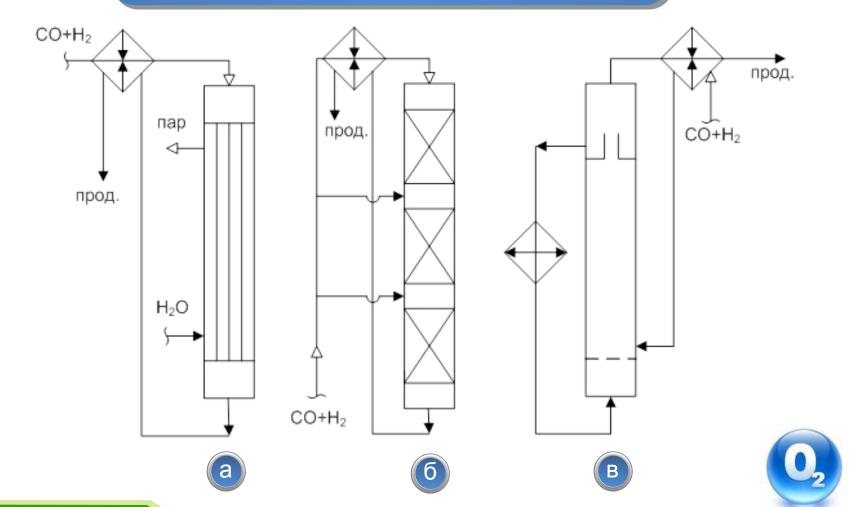
02

Синтезы на основе оксида углерода

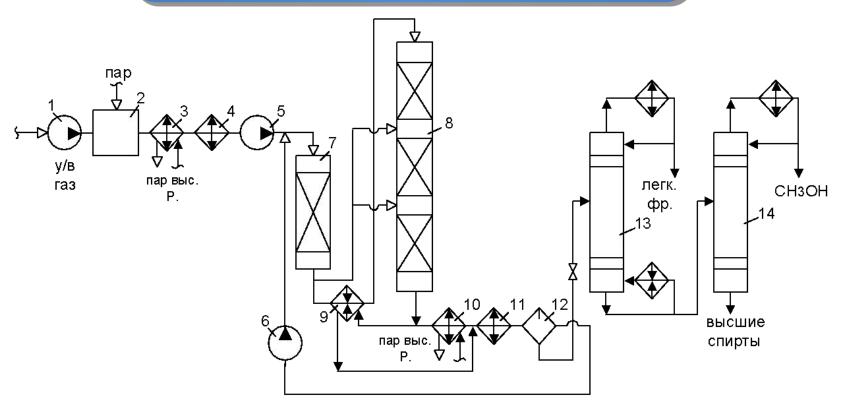
Считается, что метанол получается в реакционной зоне не из ${\rm CO}_2$, который образуется при взаимодействии с водой которая выделяется из метанола:

$$\bigcirc$$
 CO + H₂O \Longrightarrow CO₂ + H₂

$$\bigcirc$$
 CO₂ + 3H₂ \Longrightarrow CH₃OH + H₂O


Синтезы на основе оксида углерода

Реакционные узлы синтеза метанола


Синтезы на основе оксида углерода

Технологическая схема синтеза метанола

1,5,6-компрессоры, 2-конвертер, 3,10-котлы-утилизаторы, 4,11-холодильники, 7-адсорбер, 8-реактор, 9-теплообменник, 12-сепаратор, 13,14-ректификационные колонны

Процесс взаимодействия синтез-газа с олефинами, где происходит присоединение по двойной связи атома углерода с одной стороны и формильной группы с другой стороны называется оксосинтез или гидрофирмилирование:

$$CH_2 = CH_2 + CO + H_2 \longrightarrow CH_3 - CH_2 - CHO$$

Полученные альдегиды сами по себе интереса не представляют, поэтому путем гидрирования их переводят в спирты:

Реакционная способность олефинов с удлинением цепи изменяется в следующей последовательности:

$$CH_2 = CH_2 > CH_2 = CH - CH_3 > (CH_3)_2C = CH_2$$

Формильная группа преимущественно присоединяется к наименее замещенному углеродному атому при двойной связи:

$$(CH_3)_2C=CH_2 + CO + H_2 \longrightarrow (CH_3)_2CH-CH_2-CHO$$

Тогда как из пропилена и других олефинов с линейной цепью получаются по два изомерных альдегида:

CH₂=CH-CH₃

$$\rightarrow$$
CH₃-CH₂-CH₂-CHO
 \rightarrow
(CH₃)₂CH-CHO

Гидроформилирование олефинов

OH
$$CH_2 = CH - CH_3 + H_2O \longrightarrow CH_3 - CH - CH_3$$

$$OLD CH_2 = CH - CH_3 + 0.5O_2 \longrightarrow CH_2 = CH - CHO$$

$$OLD CH_2 = CH_2 + CO + H_2 \longrightarrow CH_3 - CH_2 - CHO$$

CH₂=CH-CH₃ + CO + H₂
$$\longrightarrow$$
 CH₃-CH₂-CH₂-CHO +

Промышленное применение процессов гидроформилирования

- Получение н-масляного альдегида из пропилена и синтез-газа
- Синтез высших спиртов из α-олефинов (от С8 и выше)
- Производство пропионового альдегида из этилена

HCo(CO)₄

Гидрокарбонилкобальтовый без модификаторов

Карбонилродиевый модифицированный фосфинами

КАТАЛИЗАТОРЫ

Карбонилкобальтовый модифицированный фосфинами

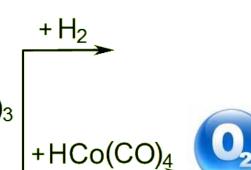
HRh(CO)(R₃P)₃

 $Co_2(CO)_6(R_3P)_2$

Механизм процесса гидроформилирования

при диссоциация катализатора с образованием поляризационно - ненасыщенного комплекса

Внедрение этилена по связи Со-Н


$$HCo(CO)_3 + CH_2 = CH_2 \longrightarrow HCo(CO)_3 \longrightarrow CH_3 - CH_2Co(CO)_3$$

$$CH_2 = CH_2$$

Внедрение СО по связи С-Со

$$CH_3$$
— $CH_2Co(CO)_3$ $\stackrel{+CO}{\longleftarrow}$ CH_3 — $CH_2COCo(CO)_3$

алкилацилкарбонилкобальта + HCo(CO)

Механизм процесса гидроформилирования

$$H$$
 \downarrow
 $CH_3-CH_2COC_0(CO)_3 \longrightarrow CH_3-CH_2-CHO + HC_0(CO)_3$
 \downarrow
 H
 $CH_3-CH_2-CHO + Co_2(CO)_7$
 $CH_3-CH_2-CHO + Co_2(CO)_7$

Регенерация катализатора

$$Co_2(CO)_7 + CO \longrightarrow Co_2(CO)_8 + H_2 \longrightarrow 2HCo(CO)_4$$

Параметры процесса гидроформилирования

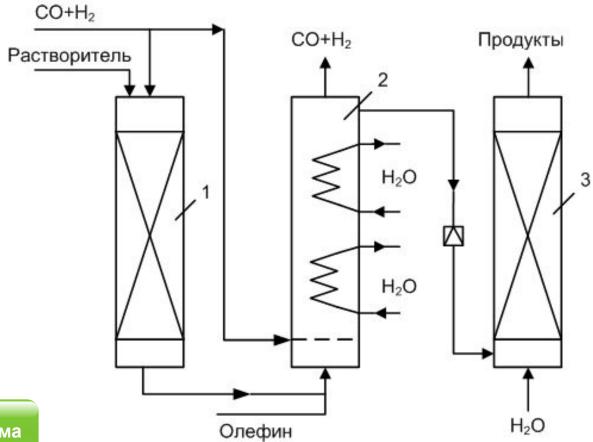
Технологическое оформление реакционных узлов

Технологическое оформление реакционных узлов процессов гидроформилирования определяется

- Способом приготовления катализатора
- Способом его выведения из продуктов реакции. Способы выведения следующие:
 - понижение давления;
 - химический способ, который заключается в обработке продуктов реакции серной кислотой и пероксидом водорода с разрушением карбонилов кобальта:

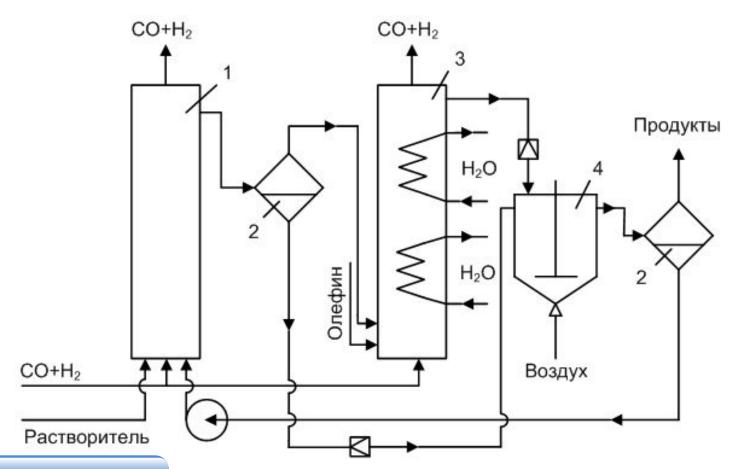
$$Co_2(CO)_8 + H_2SO_4 + 2H_2O \longrightarrow 2CoSO_4 + 4H_2O + 8CO$$
 далее CoSO4 переводят в кобальтовую соль из которой получают активные гидрокарбонилы кобальта

Обычная отгонка при использовании стабильных, устойчивых катализаторов

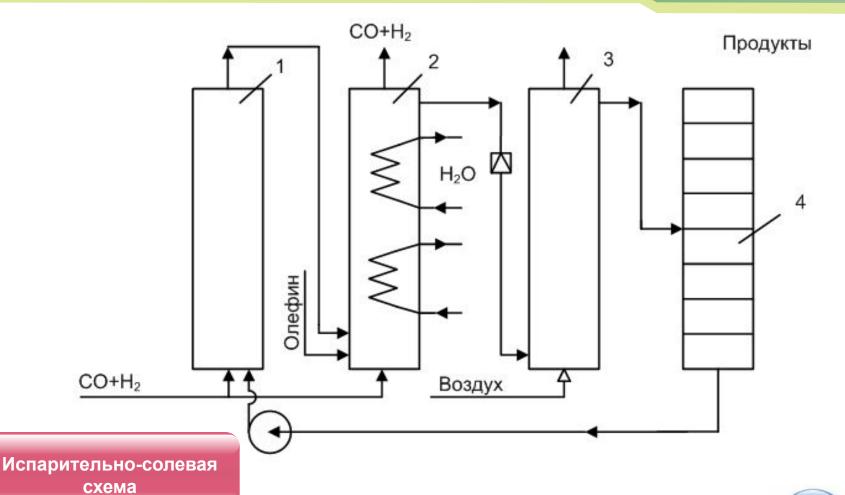


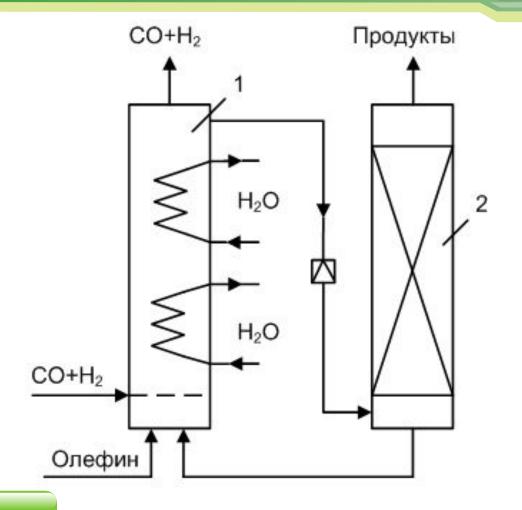
Реакционные узлы процесса гидроформилирования

а Триадная схема


1-катализатор, 2-реактор, 3-декатализер

б Экстракционно-солевая схема


1-карбонилообразователь, 2-сепараторы, 3-реактор, 4-экстрактор


1-карбонилообразователь, 2-реактор, 3-окислительная колонна, 4-испарительная колонна

Испарительная схема

Классификация

1. По типу и количеству стадий протекания реакции:

$$\begin{array}{c}
\text{(a)} & RCR' + HCN \Longrightarrow R' \\
 & R \\
 & C \\
 & CN
\end{array}$$

2. По типу присоединяющегося реагента:

3. По величине теплового эффекта

Производство изопрена

Альдольная конденсация

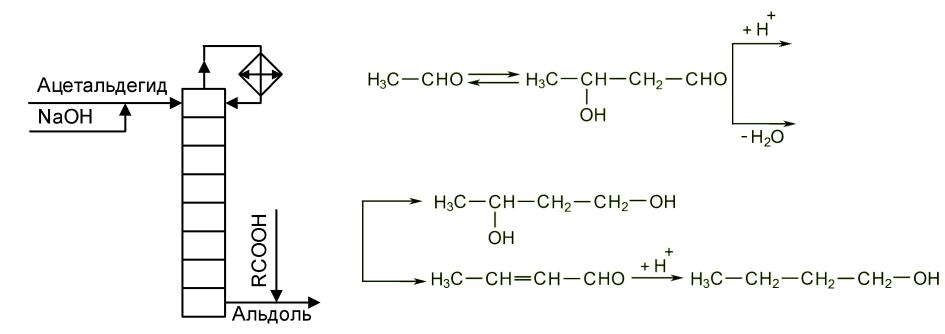
Перевод реагента в активное состояние:

$$OH^{-} + H-CH_2-C \stackrel{O}{\stackrel{\leftarrow}{H}} \longrightarrow H_2O + CH_2-C \stackrel{-...O}{\stackrel{\leftarrow}{\hookrightarrow}} H_2O$$

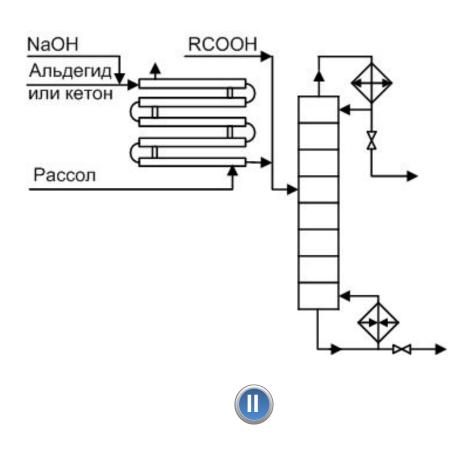
П Вторая стадия:

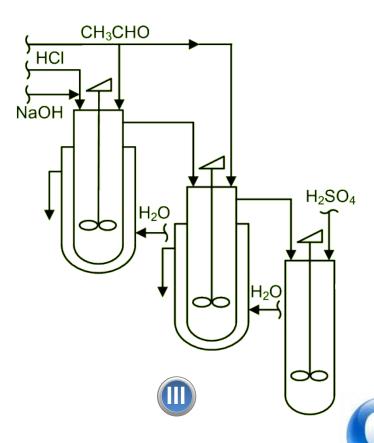
$$\bar{CH_2} - C \stackrel{O}{\underset{H}{\stackrel{}}} + R - C \stackrel{O}{\underset{H}{\stackrel{}}} \longrightarrow R\bar{CH} - CH_2 - C \stackrel{O}{\underset{H}{\stackrel{}}} \longrightarrow$$

$$\begin{array}{c} + H_2O \\ \hline \longrightarrow \\ - OH \end{array} \begin{array}{c} RCH - CH_2 - C \\ \\ OH \end{array}$$



Технология производства продуктов альдольной конденсации





Технология производства продуктов альдольной конденсации

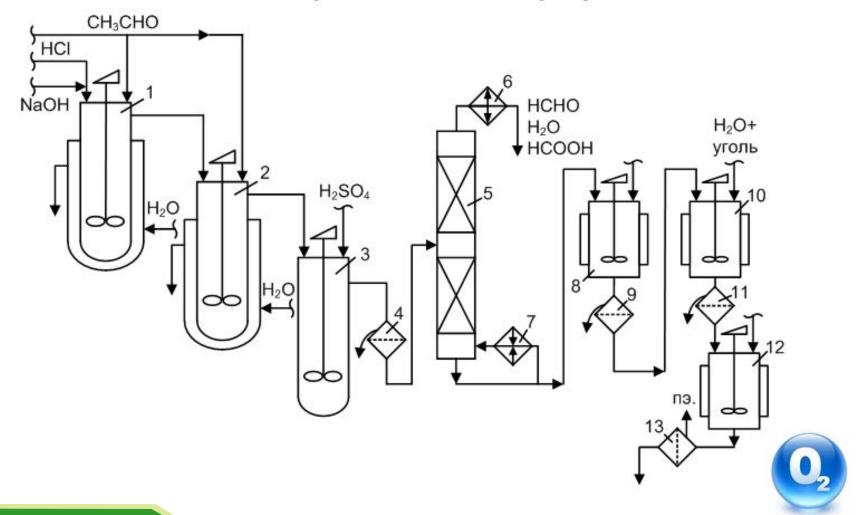


Схема производства пентаэритрита.

Спасибо!