Выполнил: Берестюк М., группа ИБМ4-51

Уравнение сохранения энергии для произвольного мгновения работы машины:

$$W_{\mathrm{дB}} - W_{\mathrm{полезн}} - W_{\mathrm{потерь}} - W_{\mathrm{рек}} \pm W_{\mathrm{упр}} \pm W_{G} \pm W_{\mathrm{ин}} = 0$$

Мгновенный КПД характеризует мощность, затрачиваемую на преодоление сил полезного сопротивления

$$\eta_{ ext{мгн}} = rac{W_{ ext{полезн}}}{W_{ ext{дв}}}$$

Мгновенный коэффициент потерь характеризует мощность, затрачиваемую на преодоление сил вредного сопротивления

$$\chi_{\text{M}\Gamma\text{H}} = \frac{W_{\text{потерь}}}{W_{\text{ЛВ}}}$$

При установившемся движении

$$\int_{0}^{\tau_{uukn}} (W_{ynp} + W_G + W_{uh}) dt = 0$$

ИЛИ

$$\int\limits_{0}^{\phi_{uukn}} (M_{ynp}^{\kappa p} + M_{G}^{\kappa p} + M_{uh}^{\kappa p}) d\phi = 0$$

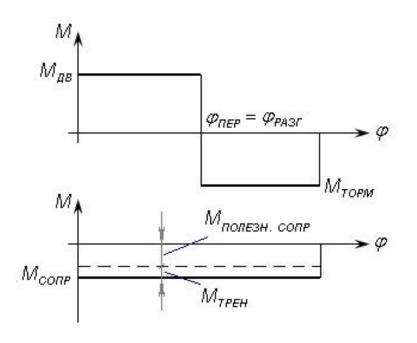
Поэтому интегрирование уравнения баланса мощностей за полный цикл т_{цикл} дает

$$(A_{\text{дв}})_{\text{цикл}} = (A_{\text{полезн}} + A_{\text{потерь}} + A_{\text{рек}})_{\text{цикл}}$$

Критериями, позволяющими оценить экономичность расхода энергии двигателя за цикл могут служить:

• доля потерь

$$d_{\text{потерь}} = \left(\frac{A_{\text{потерь}}}{A_{\text{дв}}}\right)_{\text{цикл}}$$

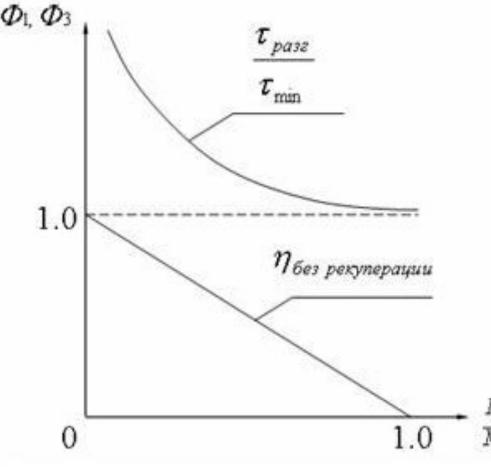

• цикловой КПД

$$\eta_{ ext{цикла}} = \left(rac{A_{ ext{полезн}}}{A_{ ext{дв}}}
ight)_{ ext{цикл}}$$

В цикле установившегося движения они не являются независимыми параметрами, а однозначно связаны между собой как средние значения их функций за цикл

$$\eta = \frac{(A_{none3h})_{yukn}}{(A_{none3h} + A_{nomepb})_{yukn}} = \frac{(A_{\partial b} - A_{nomepb})_{yukn}}{(A_{\partial b})_{uukn}} = 1 - d_{nomepb}$$

Передачи	кпд	Доля потерь
Одноступенчатая цилиндрическая зубчатая передача	0,960,98	0,020,04
Двухступенчатая цилиндрическая зубчатая передача	0,900,95	0,050,10
Однорядный планетарный редуктор	0,900,95	0,050,10
Ременная передача	0,940,96	0,040,06
Цепная передача	0,920,95	0,050,08
Пара подшипников качения	_	0,02
Упругая соединительная муфта	_	0,02



$$M_{\sum \mathrm{pasr}} \varphi_{\mathrm{pasr}} = M_{\sum \mathrm{ropm}} \varphi_{\mathrm{ropm}}$$

$$T_{max} = \frac{J_{\sum}\omega_{max}^2}{2} = M_{\sum pasr}\varphi_{pasr}$$

$$au_{\text{цикл}} = au_{\text{разг}} + au_{\text{торм}}$$

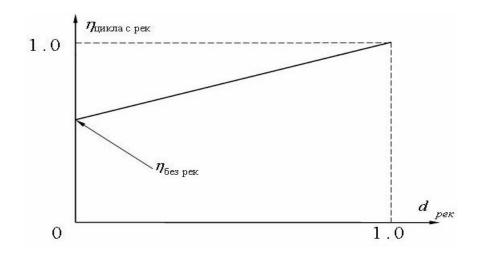
$$au_{\mathrm{pasr}} = au_{min} rac{M_{\mathrm{AB}}}{M_{\mathrm{\sum pasr}}}$$

$$\eta_{ ext{цикл}} = rac{(A_{ ext{дв}})_{ ext{разг}} - \left|A_{ ext{потерь}}
ight|_{ ext{цикл}}}{(A_{ ext{дв}})_{ ext{разг}}}$$

$$T_{
m morepb} = \Delta M_{
m max} = \int\limits_0^{arphi_{
m pa3F}} M_{
m pa3F} {
m d} arphi = \int\limits_{
m pa3F} \cdot arphi_{
m pa3F}$$

$$\eta$$
цикл = $rac{(\int M_{
m дB} {
m d} \phi - \int M \; \Sigma {
m d} \phi)$ цикл $= 1 - rac{M \; \Sigma}{M_{
m дB}}$

$$\frac{M_{\Sigma}}{M_{\rm AB}}$$


Рекуперация – преобразование и накопление энергии аккумулирующим устройством в процессе торможения, использование ее в период разгона и на другие полезные цели.

$$\eta_{\rm цикл \, c \, pek} = \frac{(A_{\rm дв} - A_{\rm потерь} + A_{\rm pek})_{\rm цикл}}{(A_{\rm дв})_{\rm цикл}} = 1 - d_{\rm потерь} + d_{\rm pek} = A_{\rm цикл \, без \, pek} + d_{\rm pek}$$

Коэффициент рекуперации характеризует качество процесса рекуперации

$$k_{\text{рек}} = \frac{A_{\text{акк}}}{T_{\text{max}}}$$

Т_{тах} – максимальное значение кинетической энергии в начале торможения

Рекуперация энергии позволяет резко увеличить цикловой КПД машины практически без снижения ее динамических качеств в зависимости от доли рекуперированной при торможении энергии.

Другие пути повышения экономичности машин:

изменение потенциальной мощности при деформации упругих уравновешивающих устройств, реализуемой в работу внутри цикла (это снижает номинальную мощность установленного двигателя); работы машины в режиме выбега при отключении двигателя изменение «момента переключения» в цикле разгон-торможение

- 1. Основы проектирования машин по динамическим критериям и показателям экономичности. Под редакцией И.В. Леонова. Издательство МГТУ им. Баумана 2007 г.
- 2. Детали машин. Под редакцией О.А. Ряховского. Издательство МГТУ им. Баумана 2004 г.