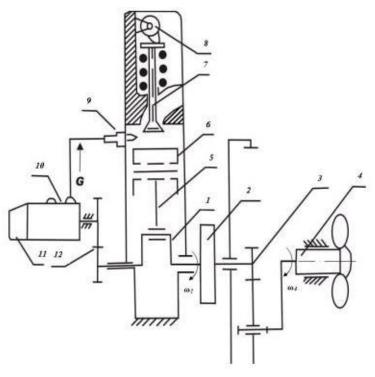
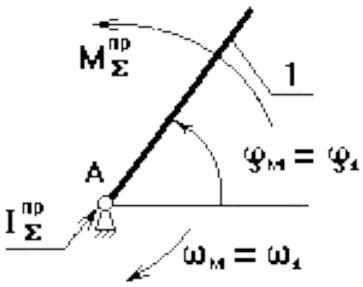
Метод Мерцалова

Выполнил


Андрей Стребков группа ИБМ 2-51

МГТУ им.Баумана 2013 год

План


- 1.Схема машины
- 2.Динамическая модель машинного агрегата
- 3.Определение необходимого момента инерции маховых масс
- 4-5 Метод Мерцалова
- 6.Колебания в механизме
- 7.Момент инерции первой группы звеньев
- 8.Область применения
- 9-14Пример расчета необходимого момента инерции маховика
- 15.Обзор типов маховиков
- 16.Список литературы

1.Схема машины

 Динамическая модель механизма дизель энергетического агрегата

2.Динамическая модель машины

 Динамическая модель этого же машинного агрегата в виде одного звена, к которому приведены силы и массы.

3.Определение необходимого момента инерции маховых масс

• Из анализа одномассовой динамической модели машины с жёсткими звеньями следует, что основным условием работы МА в установившемся режиме является равенство суммарной работы нулю за цикл. При этом внутри цикла могут существовать изменения скорости звена приведения около среднего значения. Исследования износов в кинематических парах механизмов показывают непосредственную связь их с величинами колебаний скоростей звеньев относительно среднего значения. При превышении критической величины колебаний начинаются нарушения рабочего процесса машин, связанные с рассогласованием движения органов системы управления. Вот почему для большинства поршневых и других машин практикой установлены допустимые величины этих колебаний в виде безразмерного коэффициента неравномерности вращения главного вала

$$\delta = \frac{\omega_{\text{max}} - \omega_{\text{min}}}{\omega_{\text{cp}}} = \frac{\Delta \omega_{\text{max}}}{\omega_{\text{cp}}}$$

$$\omega_{\mathrm{max}}, \omega_{\mathrm{min}}$$

 $\omega_{\rm cp} = \frac{\omega_{\rm max} + \omega_{\rm min}}{2}$

-максимальное и минимальное значение скорости вращения вала в цикле

-среднее значение скорости вращения вала.

4. Метод Мерцалова

Наиболее простым способом снижения неравномерности вращения является увеличение инерционности механической системы за счёт расположения на главном валу машины маховика, который по принципу работы аналогичен конденсатору электрической энергии в цепи электрического фильтра. В основу расчета необходимого для этой цели момента инерции маховой массы профессором МВТУ им. Н.Э. Баумана Мерцаловым были положено максимальное изменение кинетической энергии в цикле установившегося движения, которое связано с коэффициентом неравномерности вращения

5. Метод Мерцалова

$$(\Delta T_{\rm I})_{\rm max} = J_{\rm I} \left[\frac{\omega_{\rm max}^2}{2} - \frac{\omega_{\rm min}^2}{2} \right] = J_{\rm I} \omega_{\rm cp}^2 \delta = J_{\rm I} (\Delta \omega)_{\rm max} \omega_{\rm cp}$$

• где: J- приведенный момент инерции звеньев «первой группы», имеющий постоянное значение.

$$(\Delta \omega)_{\text{max}} = \frac{(\Delta T_1)_{\text{max}}}{J_1 \omega_{cp}}$$

6.Колебания в механизме

- Источником колебаний являются периодические изменения работ сил и кинетической энергии звеньев механизма, получающие отражение в динамической модели как изменения приведенного суммарного момента сил и приведенного момента инерции второй группы звеньев
- Профессором Мерцаловым было выдвинуто допущение о незначительном влиянии коэффициента неравномерности на изменение кинетической энергии второй группы звеньев и было предложено при определять её по средней скорости вращения звена приведения

$$(T_{\rm I})_{\rm max} = \left(\sum A - T_{\rm II}\right)_{\rm max}$$

$$\sum A = \int M_{\Sigma} d\varphi$$

$$T_{\mathrm{II}} = J_{\mathrm{II}} \frac{\omega_{\mathrm{cp}}^2}{2} \ .$$

7. Момент инерции первой группы звеньев

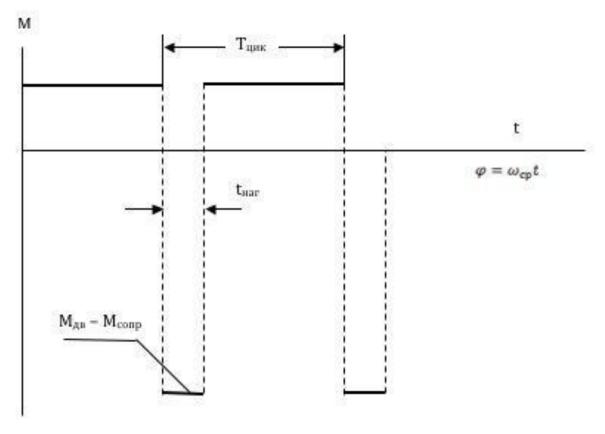
- При этом допущении получается простое расчетное выражение для определения необходимого момента инерции «первой группы» звеньев
- При имеющемся меньшем значении J_1 в машине необходимо устанавливать маховик, который увеличивает суммарное значение маховых масс до величины Јнеобх.

$$(J_{\rm I})_{\rm Heo \delta x} = \frac{\left(\sum A - T_{\rm II}\right)_{\rm max}}{\left[\delta\right]\omega^2_{\rm cp}}$$

8.Область применения

Расчётом необходимых масс накопителей механической энергии решаются следующие задачи:

- Снижение колебаний и износов деталей трансмиссий;
- Снижение необходимой мощности, габаритов и стоимости двигателей;
- Снижение расхода энергии машины в эксплуатации;
- Снижение загрязнения атмосферы при работе ДВС.


9.Пример расчета необходимого момента инерции маховика.

В качестве примера рассмотрим МА, периодическая переменная нагрузка которого имеет ярко выраженный пиковый характер (рис 2). Под нагрузкой обычно понимают момент сопротивления М сопр., приложенный со стороны РМ. Продолжительную часть времени момент сопротивления имеет незначительное значение, а некоторое непродолжительное время t нагрузка имеет пиковое значение М продолжительность пиковой нагрузок характеризуется коэффициентом скважности

$$\gamma = rac{t_{ ext{muk}}}{T_{ ext{цикл}}} = rac{oldsymbol{\phi}_{ ext{н}}}{oldsymbol{\phi}_{ ext{цикл}}}$$

Где $\mathbf{t}_{\text{пик}}$, $\phi_{\text{н}}$ - время действия пиковой нагрузки и соответствующий угловой промежуток поворота вала; $T_{\text{пикл}}$ - период цикла изменения нагрузки.

необходимого момента инерции маховика

● Рис.2

необходимого момента инерции маховика

Принимая приведенный момент двигателя $M_{\rm дв}$ постоянным, можно найти необходимую его мощность $W_{\rm дв}$ из условия равенства работ с работой момента сопротивления за цикл установившегося движения

При допущении постоянного значения приведенных моментов инерции изменения кинетической энергии и суммарной работы в цикле принимают максимальные значения при максимальной скорости ω_{мах} звена приведения

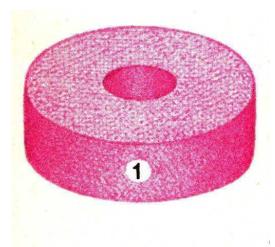
скорости
$$\omega_{\max}$$
 звена приведения $\left(\Delta T_{\mathrm{I}}\right)_{\max} = \left(\sum A\right)_{\max}$

необходимого момента инерции маховика

 Скорость ω увеличиваются за промежуток между пиковыми нагрузками до максимальной величины

$$\left(\sum A\right)_{ ext{max}} = \int\limits_{arphi_{ ext{nuk}}}^{arphi_{ ext{Luk}, ext{I}}} M_{ ext{E}} darphi = \gamma M_{ ext{conp}}^{a} \left(arphi_{ ext{Luk}, ext{I}} - arphi_{ ext{nuk}}
ight)$$

Отсюда необходимое значение момента инерции накопителя энергии, приведенного к главному валу машины и вращающемуся со средней скоростью $\omega_{\text{ср}}$, и связано с мощность $W_{\text{пик}}$ и периодом изменения $T_{\text{цикл}}$ пиковой нагрузки


$$(J_{\rm I})_{\rm Heofx} = W$$
пик T цикл / ([δ] ω cp).

15.Обзор типов маховиков

В настоящее время, существуют пять основных типов маховиков:

Супермаховик

И

Диск с отверстием

2

Обод со спицами

Ленточный

Диск равной прочности

10.Литература

- Леонов И.В., Леонов Д.И. Теория механизмов и машин (основы проектирования по динамическим критериям и показателям экономичности): учеб. пособие. М.: Высшее образование, Юрайт-Издат, 2009. 239 с.
- http://cdot-nntu.ru/basebook/TMM-1/files/assets/basic-html/page107.html