Основы взаимозаменяемости

Взаимозаменяемостью называется свойство одних и тех же деталей, узлов или агрегатов машин и т. д., позволяющее устанавливать детали (узлы, агрегаты) в процессе сборки или заменять их без предварительной подгонки при сохранении всех требований, предъявляемых к работе узла, агрегата и конструкции в целом.

Указанные свойства изделий возникают в результате осуществления научно-технических мероприятий, объединяемых понятием

"принцип взаимозаменяемости".

обеспечение взаимозаменяемости

Выполнение требований к точности деталей и сборочных единиц изделий является важнейшим исходным условием обеспечения взаимозаменяемости.

Кроме этого, необходимо выполнять и другие условия:

- устанавливать оптимальные номинальные значения параметров деталей и сборочных единиц,
- выполнять требования к материалу деталей, технологии их изготовления и контроля и т. д.

полная взаимозаменяемость:

- упрощается процесс сборки он сводится к простому соединению деталей рабочими преимущественно невысокой квалификации;
- появляется возможность точно нормировать процесс сборки во времени, устанавливать необходимый темп работы и применять поточный метод;
- создаются условия для автоматизации процессов изготовления и сборки изделий, а также широкой специализации и кооперирования заводов (при которых завод-поставщик изготовляет унифицированные изделия, сборочные единицы и детали ограниченной номенклатуры и поставляет их заводу, выпускающему основные изделия);
- упрощается ремонт изделий, так как любая изношенная или поломанная деталь или сборочная единица может быть заменена новой (запасной).

ФУНКЦИОНАЛЬНАЯ ВЗАИМОЗАМЕНЯЕМОСТЬ —

обеспечивается работоспособность изделий с оптимальными и стабильными во времени эксплуатационными показателями или с оптимальными показателями качества функционирования для сборочных единиц

- ФУНКЦИОНАЛЬНЫМИ являются геометрические, электрические, механические и другие ПАРАМЕТРЫ, влияющие на эксплуатационные показатели машин и других изделий или служебные функции сборочных единиц.
- ФУНКЦИОНАЛЬНЫЕ РАЗМЕРЫ размеры, непосредственно или косвенно влияющие на эксплуатационные показатели машины или служебные функции узлов и деталей

Зависимость эксплуатационного показателя от функциональных размеров

Сопрягаемые детали: мощность двигателей зависит

от зазора между поршнем и цилиндром

Несопрягаемые детали: мощность двигателей зависит

от диаметра жиклера карбюратора

ЕСДП - единая система допусков и посадок

Распространяется на допуски размеров гладких элементов деталей и на посадки, образуемые при соединении этих деталей.

Единая система взаимозаменяемости

Основные нормы взаимозаменяемости включают системы допусков и посадок на резьбы, зубчатые передачи, конуса и др.

При конструировании определяются линейные и угловые размеры детали, характеризующие ее величину и форму.

Они назначаются на основе результатов расчета деталей на прочность и жесткость, а также исходя из обеспечения технологичности конструкции и других показателей в соответствии с функциональным назначением детали.

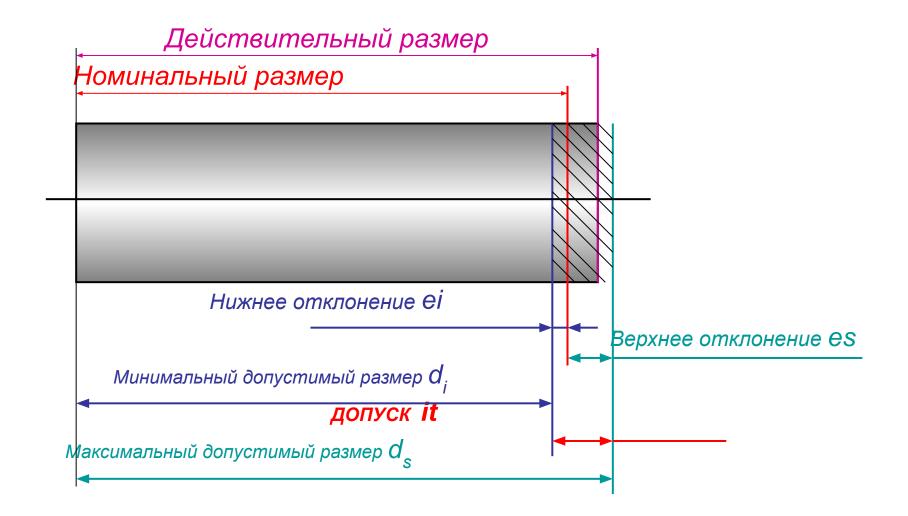
На чертеже должны быть проставлены все размеры, необходимые для изготовления детали и ее контроля.

Точность изготовления

 важнейший фактор работоспособности детали

Абсолютной точности в природе не существует!

Для каждой детали, работающей в определенных условиях необходимо указывать интервал допустимых размеров, т. е. номинальные размеры и допустимые отклонения от них


Геометрические параметры. Размер

Размер — это числовое значение линейной величины (диаметра, длины и т. д.) в выбранных единицах измерения.

- Номинальный это размер, относительно которого определяются предельные размеры и который служит также началом отсчета отклонений.
- Действительный это размер, установленный измерением с допустимой погрешностью.

Истинный— это действительный размер, установленный измерением с нулевой погрешностью.

• Предельные — это два предельно допустимых размера, между которыми должен находиться или которым может быть равен действительный размер.

Допуск – это разность между максимальным и минимальным
$$it = d_s - d_i$$
 допустимыми размерами

Допуск – это сумма верхнего и нижнего отклонений it = es + ei

Допуск зависит от квалитета и размера

$$IT = a \cdot i$$
 ,

где *а* - число единиц допуска, зависящее от квалитета и не зависящее от номинального размера;

і - единица допуска

Единица допуска (мкм)

$$i = 0.4 \cdot \sqrt[3]{D} + 0.001 \cdot D$$

для размеров до 500 мм

$$i = 0.004 \cdot D + 2.1$$

для размеров свыше 500 до 10000 мм

где D — среднее геометрическое крайних размеров каждого интервала, мм.

КВАЛИТЕТЫ ТОЧНОСТИ

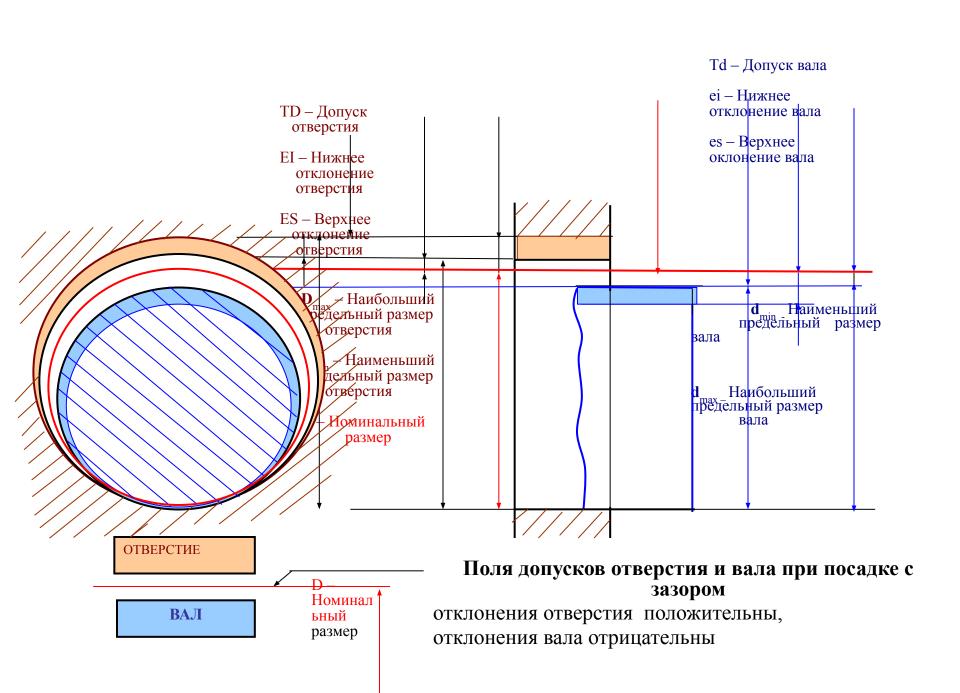
- Квалитеты точности определяют размер допуска, точнее из скольких единиц допуска состоит интервал допустимых отклонений.
- Квалитеты 01, 0, 1, 2, 3 и 4 только для высокоточных вещей
- Квалитеты от 5 до 14 обычные для машиностроения
- Квалитеты 17...19 для малоответственных размеров (бетон, дерево и т.д.)

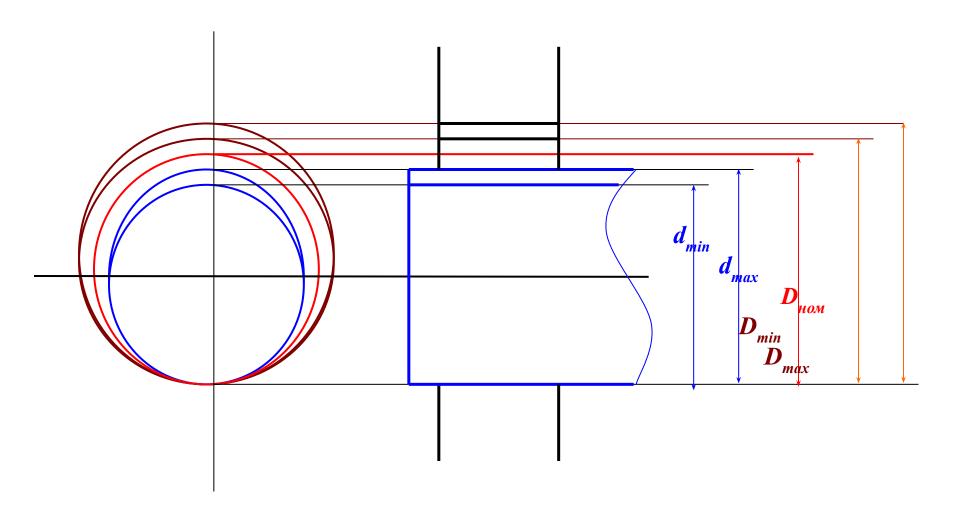
ЧИСЛО ЕДИНИЦ ДОПУСКА *а* ПО КВАЛИТЕТАМ

Квалитет	число единиц допуска (1	Квалитет	число единиц допуска (1	Квалитет	число единиц допуска а
2	3	8	25	14	400
3	3	9	40	15	640
4	4	10	64	16	1000
5	7	11	100	17	1600
6	10	12	160	18	2500
7	16	13	250	19	4000

Допуски в зависимости от квалитетов точности и размера, в мкм

ИНТЕРВАЛЫ РАЗМЕРОВ В ММ

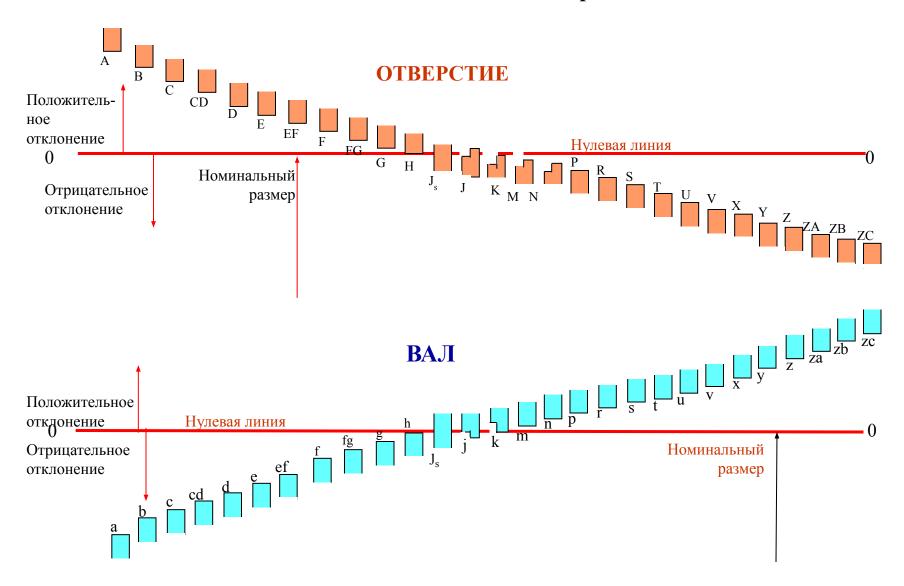

Ква- литет	03	36	610	1018	1830	3050	5080	80 120	120 180
01	0,3	0,4	0,4	0,5	0,6	0,6	0,8	1	1,2
0	0,5	0,6	0,6	0,8	1	1	1,2	1,5	2
1	0,8	0,6	1	1	1,2	1,5	2	2,5	3,5
2	1,2	1,5	1,5	2	2,5	2,5	3,5	4,5	5
3	2,0	2,5	2,5	3	4	4	5	6	8
6	5	5	7	9	11	13	16	19	22
7	10	12	15	18	21	25	30	35	40
8	14	18	22	27	33	39	46	54	63
9	25	30	36	43	52	62	74	87	100
10	40	48	58	70	84	100	120	140	160
13	140	180	220	270	330	390	460	540	630
17	1000	1200	1500	1800	2100	2500	3000	3500	4000
19	2500	3000	4000	4500	5500	6500	7500	9000	10000


соединение вала и отверстия

«ВАЛ» - термин для обозначения наружных (охватываемых) элементов деталей,

«ОТВЕРСТИЕ» — термин для обозначения внутренних (охватывающих) элементов деталей.

Термины "ВАЛ" и "ОТВЕРСТИЕ" относятся не только к цилиндрическим деталям круглого сечения, но и к элементам деталей другой формы (например, ограниченным двумя параллельными плоскостями — шпоночное соединение).



Поля допусков отверстия и вала при посадке с зазором

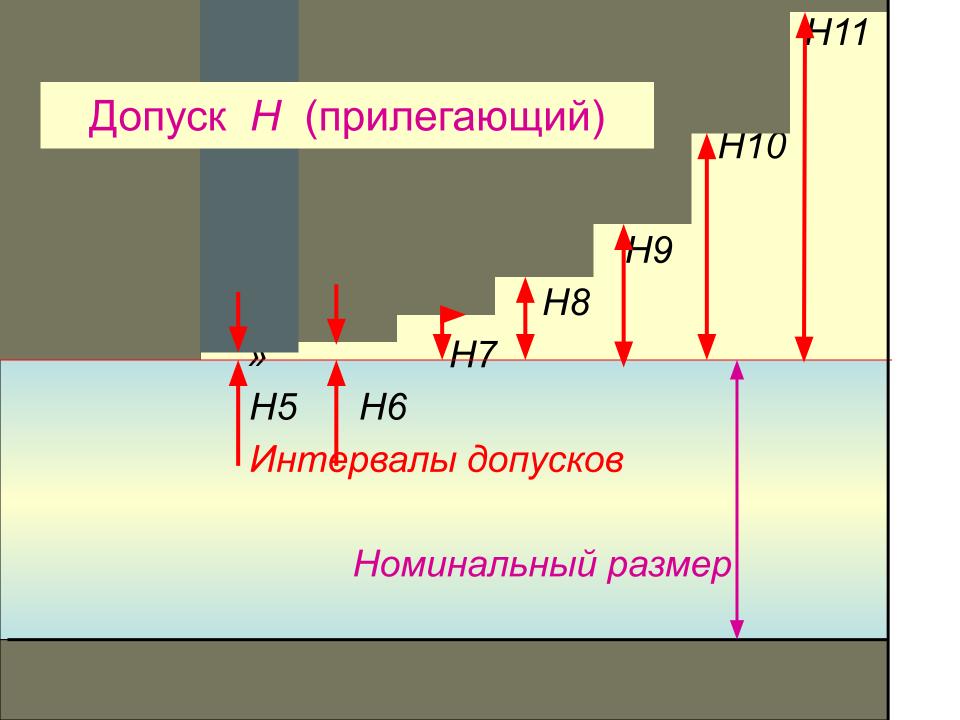
отклонения отверстия положительны, отклонения вала отрицательны

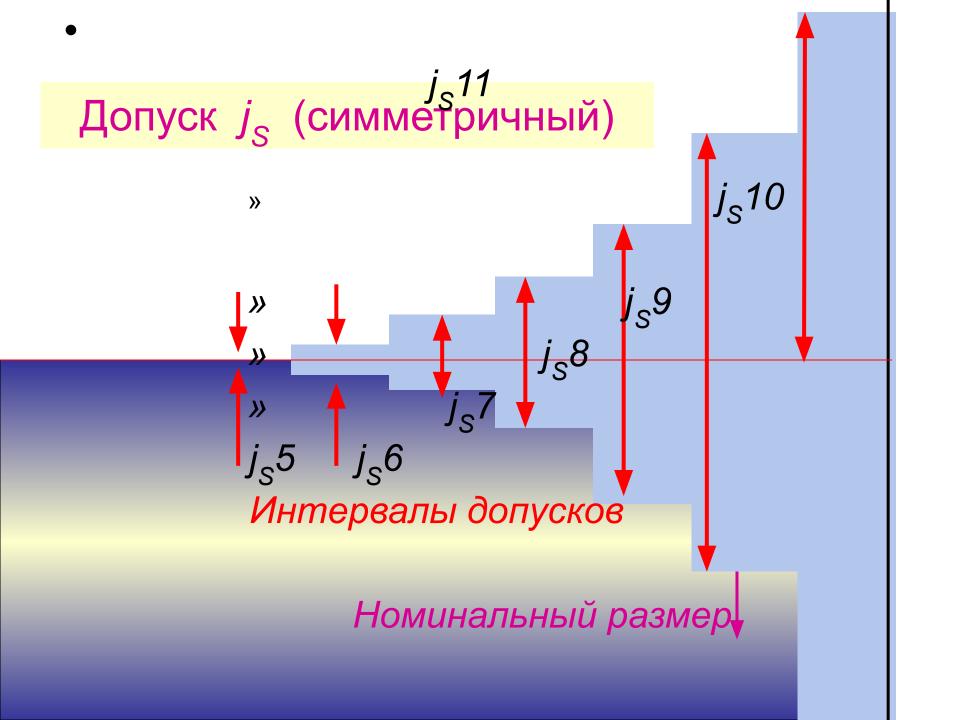
Основные отклонения отверстий и валов

ПОЛЕ ДОПУСКА it

Поле допуска указывается

- Буквой латинского шрифта, обозначающего положение поля относительно номинального размера (нулевой линии отклонений)
- 2) Числом соответствующего квалитета точности, который определяет ширину допустимого интервала

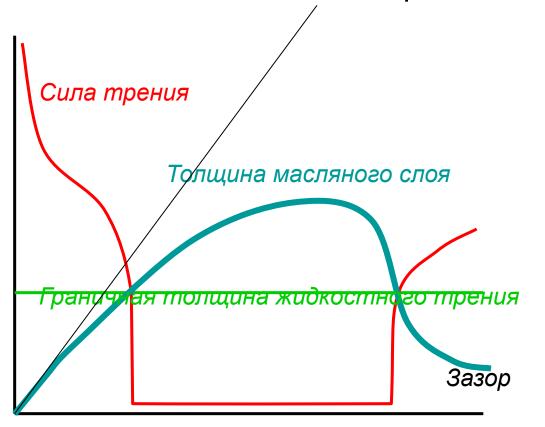

Например: H6; K8; A11; g9; s5


TOCT 20040-02 ME/KLOCY AFC TELLITIBLY CTALLART

Основные нормы взаимозаменяемости ЕДИНАЯ СИСТЕМА ДОПУСКОВ И ПОСАДОК

Ряды допусков, основных отклонений и поля допусков для размеров до 3150 мм

Интервал размеров, мм		ОСНОВНЫЕ ОТКЛОНЕНИЯ ПОЛЯ ДОПУСКОВ для ВАЛОВ								
Свыше	До	a	b	C	d	e	f	g	h	js
3	6	-270	-140	-70	-30	-20	-10	-4	0	Симме трично
30	40	-310	-170	-120	-80	-50	-25	-9	0	е поле допуск
65	80	-360	-200	-150	-100	-60	-30	-10	0	a
100	120	-410	-240	-180	-120	-72	-36	-12	0	<u>+</u> IT/2
140	160	-520	-280	-210	-145	-85	-43-	-14	0	
200	225	-740	-380	-260	-170	-100	-50	-15	0	
450	500	-1650	-840	-480	-230	-135	-68	-20	0	


ПОСАДКА

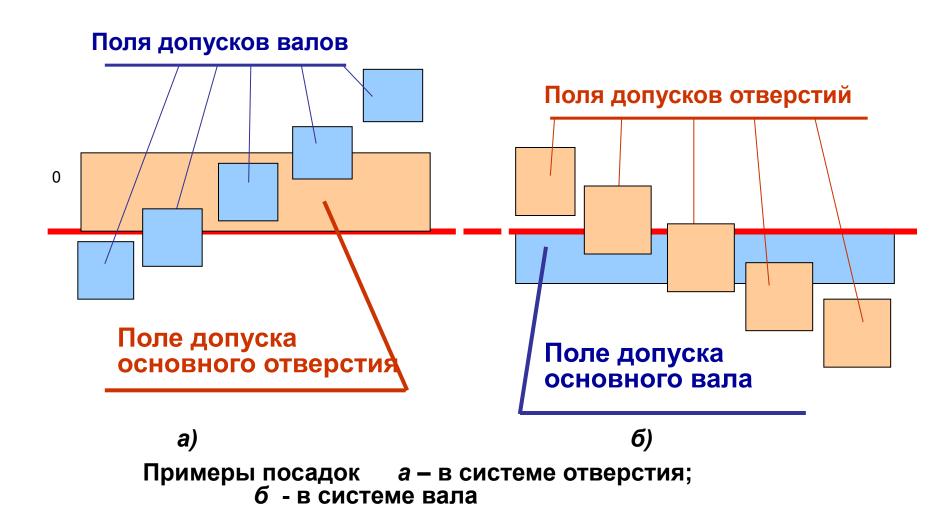
• Сопрягаемые детали в зависимости от функционального назначения должны находиться в определенных условиях контакта - посадке с зазором или с натягом.

• В старом ОСТ до 1983 г посадки с натягом имели названия: плотная, тугая, тяжелая, глухая и мертвая

Расчет посадок с зазором

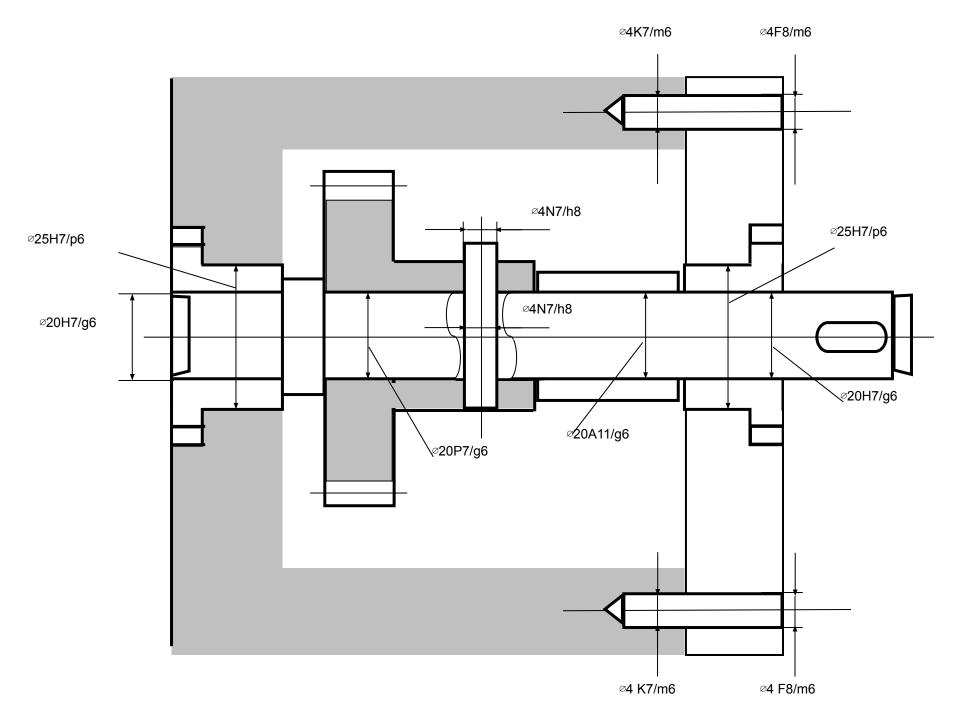
Рассчитываются зазоры с оптимальными показателями для каждого конкретного случая

Обычная зависимость силы трения от зазора в смазываемой паре трения


Расчета посадок с натягом нет!

Эмпирически

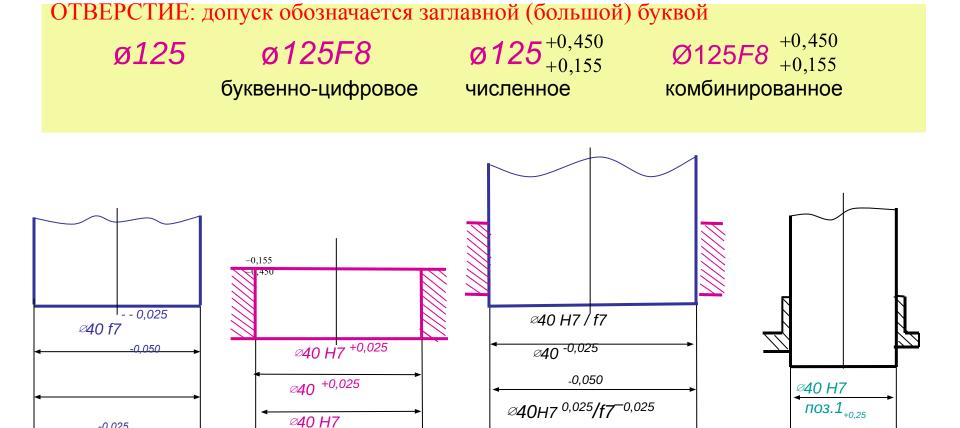
(путем экспериментальных испытаний узла в условиях, приближенных к реальным условиям эксплуатации) определяется наиболее доступная (т.е. наименее тугая) посадка, соответствующая установленному критерию, например, способная выдержать определенное количество циклов нагрузки


ΓOCT 25346 - 89

- Проходной предел один из двух предельных размеров, который соответствует максимальному количеству материала, а именно верхнему пределу для вала, нижнему для отверстия.
 - В случае применения предельных калибров речь идет о предельном размере, проверяемом *проходным* калибром.
- *Непроходной предел* один из двух предельных размеров, который соответствует минимальному количеству материала, а именно нижнему пределу для вала, верхнему для отверстия.
 - В случае применения предельных калибров речь идет о предельном размере, проверяемом *непроходным* калибром

Рекомендации по применению некоторых посадок с натягом

- Посадки H/p; P/h "легкопрессовые" характеризуются минимальным гарантированным натягом. Установлены в наиболее точных квалитетах (валы 4 6-го, отверстия 5 7-го квалитетов). Применяются в таких случаях, когда крутящие моменты или осевые силы малы или случайное относительное смещение деталей несущественно для их служебной роли; часто с дополнительным креплением
- Посадки H/r; H/s; H/t и R/h; S/h; T/h "прессовые средние" характеризуются умеренными гарантированными натягами, обеспечивающими передачу нагрузок средней величины без дополнительного крепления. Установлены для относительно высоких точностей деталей (валы 5 7-го, отверстия 6 7-го квалитетов).
- Посадки H/u; H/ x; H/z и U/h "прессовые тяжелые" характеризуются большими гарантированными натягами (0,001 0,002)dHC. Предназначены для соединений, на которые воздействуют тяжелые, в том числе и динамические нагрузки. Применяются, как правило, без дополнительного крепления соединяемых деталей. Сборка методом термической деформации. Относительно широкие допуски деталей (7 9-го квалитетов).


ПРЕДПОЧТИТЕЛЬНЫЕ ПОСАДКИ

При номинальных размерах от 1 до 500 мм

в системе отверстия: H7/e8; H7/f7; H7/g6; H7/h6; H7/j_s6; H7/k6; H7/n6; H7/p6; H7/r6; H7/s6; H8/e8; H8/h7; H8/h8; H8/d9; H9/d9; H11/d11; H11/h11; <u>в системе вала:</u> F8/h6; H7/h6; J₂7/h6; K7/h6; N7/h6; P7/h6; H8/h7: E9/h8; H8/h8; H11/h11.

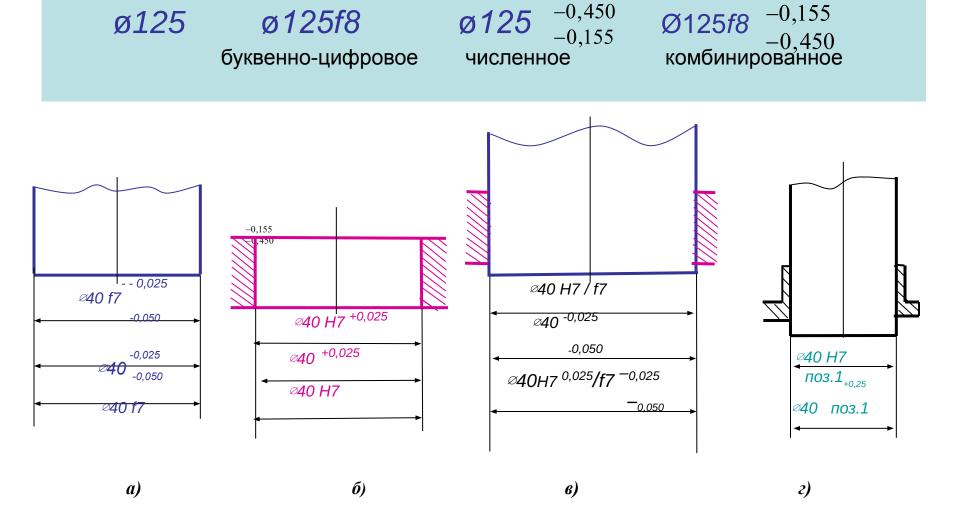
Красным ходовые посадки, синим – с натягом, зеленым – смешанные посадки, лиловым – скользящие.

Применение системы отверстия предпочтительнее

*Ø*40 поз.1

Z)

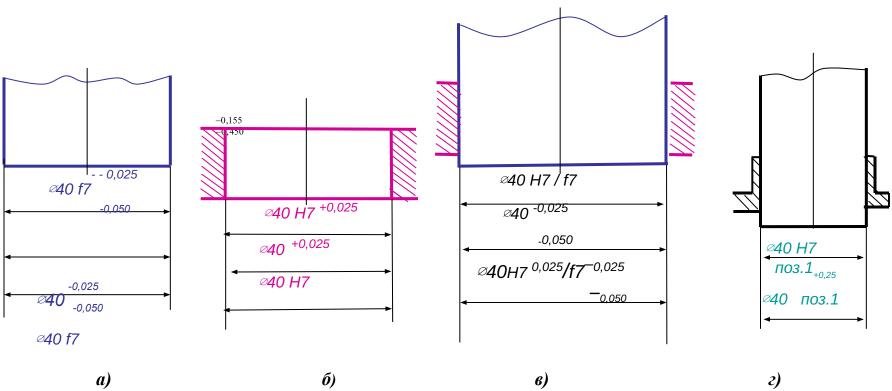
Примеры обозначения полей допусков и посадок на чертежах


B)

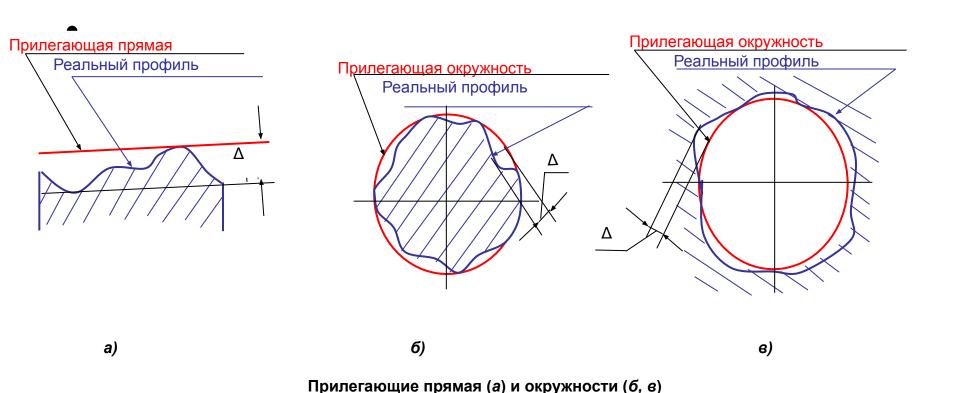
б)

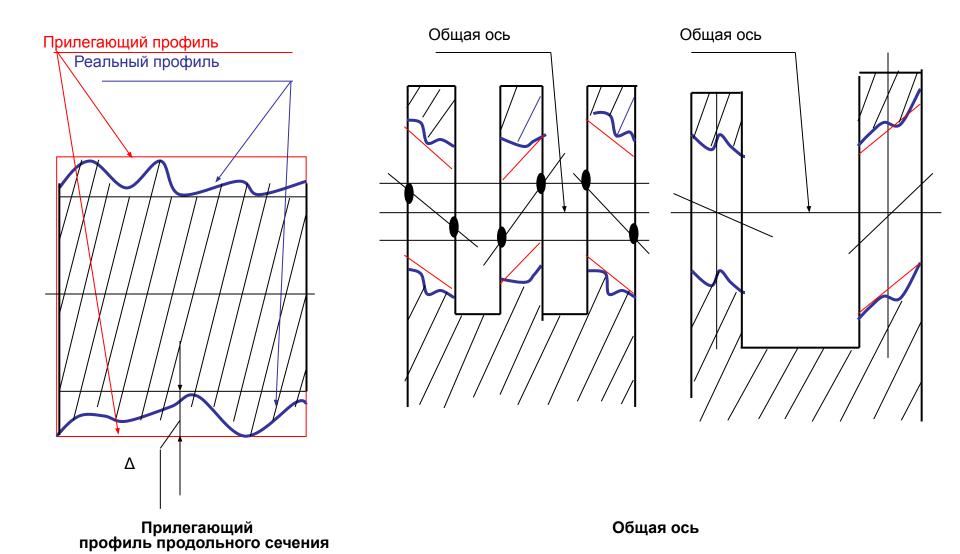
-0,025

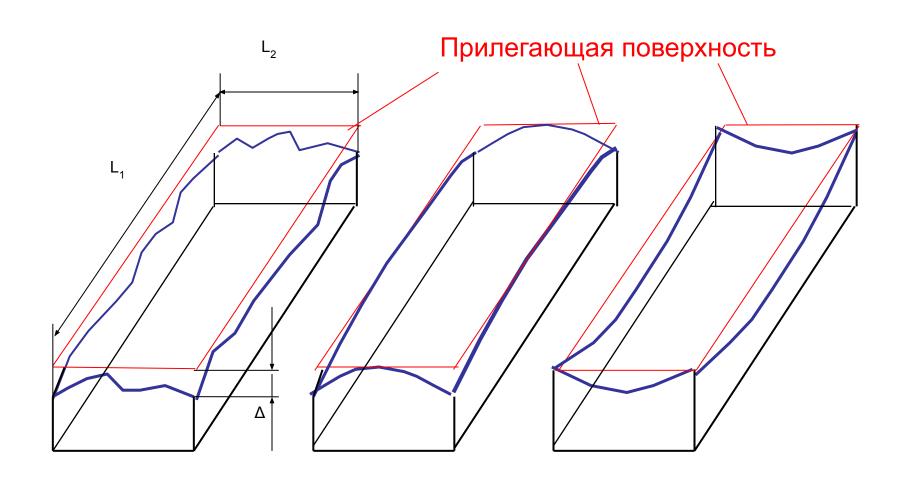
a)


Ø40 f7

ВАЛ: допуск обозначается прописной (маленькой) буквой

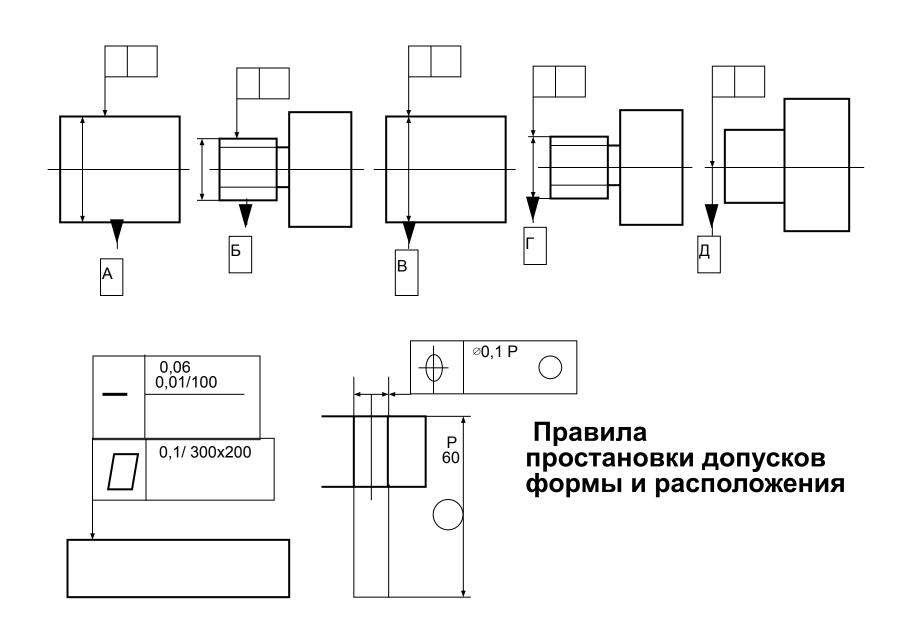

Примеры обозначения полей допусков и посадок на чертежах

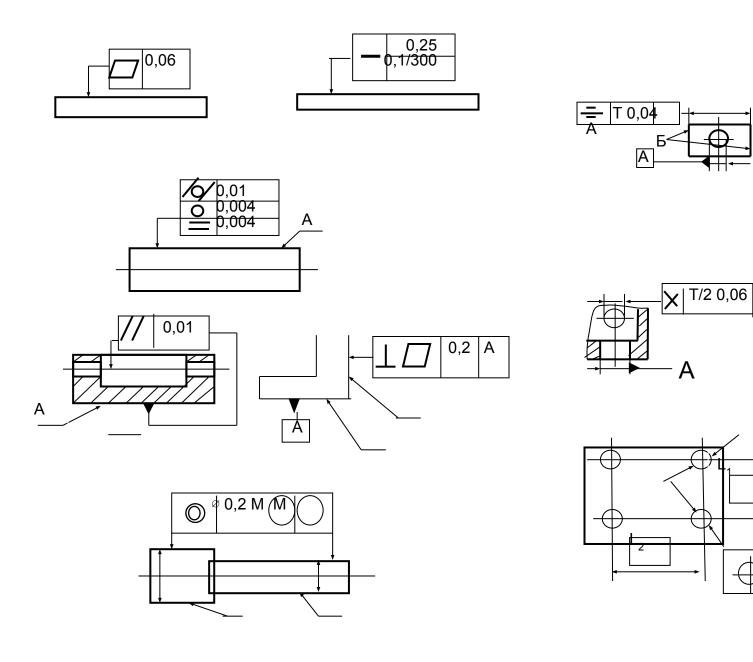

ПОСАДКА: допуск обозначается указаниями допусков сопрягаемых деталей $\emptyset 125$ $\emptyset 125H6/f8$ $\emptyset 125 - 0.450$ 0.125H6/f8 - 0.155 буквенно-цифровое численное комбинированное


Примеры обозначения полей допусков и посадок на чертежах

Точность формы и расположения ГОСТ 24642 – 81

Отклонение формы плоских поверхностей




Допуски формы и расположения

Группа допус- ков	Вид допуска	Знак	Группа допус- ков	Вид допуска	Знак
П	Прямолинейности			Параллельности	//
До пус ки	Плоскостности		Допу	Перпендикулярности	
	Круглости			Наклона	_
фо	Профиля продольного сечения	pacho	Соосности	0	
рм	Цилиндричности	/0/	ния	Симметричности	#
Ы				Позиционный	\oplus
				Пересечения осей	X

Суммарные допуски формы и расположения

Радиального биения	
Торцового биения	
Биения в заданном направлении	
Полного радиального биения	11
Полного торцового биения	
Формы заданного профиля	
Формы заданной поверхности	

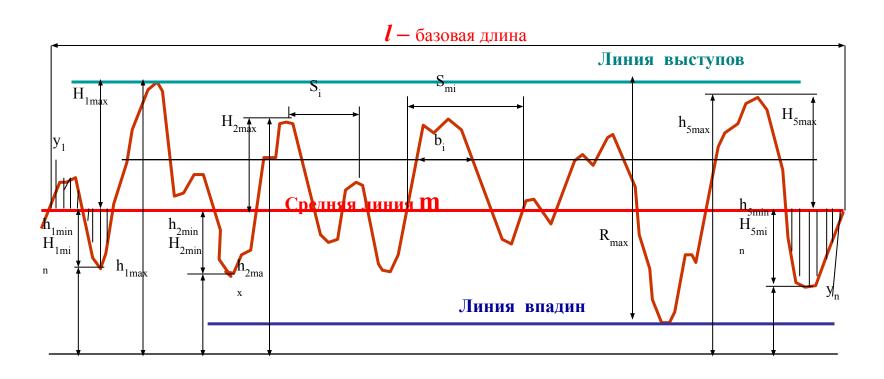
∅ 0,2 M

Качество обработки поверхности

• До 1983 г. качество обработки поверхности регламентировалось ОСТ

```
Понятие «класс чистоты поверхности» 14 классов чистоты поверхности: 1...4 - зеркальные поверхности; 5...10 обычные 11-12 шероховатые 13...14 грубые
```

Шероховатость поверхности


• ГОСТ 25142 – 82: совокупность микронеровностей поверхности с относительно малыми шагами, выделенная с помощью базовой длины.

Базовая длина L — длина базовой линии, используемой для выделения неровностей, характеризующих шероховатость поверхности.

Базовая линия (поверхность) — линия (поверхность) заданной геометрической формы, определенным образом проведенная относительно профиля (поверхности) и служащая для оценки геометрических параметров поверхности.

Числовые значения базовой длины выбирают из ряда: 0,01; 0,03; 0,08; 0,25; 0,80; 2,5; 8; 25 мм

Профилограмма поверхности

Параметры шероховатости ГОСТ 2789 – 73

Среднее арифметическое отклонение профиля $R_{_{lpha}}$

$$R_a = \frac{1}{l} \cdot \int_{0}^{l} |y(x)| dx \approx \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$$

Высота неровностей профиля по десяти точкам $R_{_{Z}}$

$$R_{z} = \frac{1}{5} \left(\sum_{i=1}^{5} |H_{i \max}| + \left| \sum_{i=1}^{5} |H_{i \min}| \right| \right)$$

Параметры шероховатости ГОСТ 2789 – 73

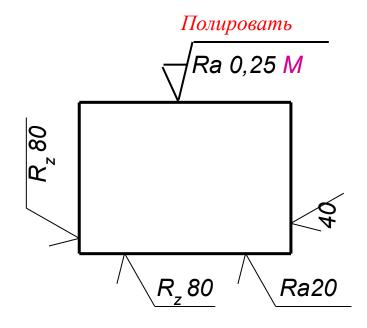
• Средний шаг неровностей профиля по вершинам S — среднее арифметическое значение шага неровностей профиля по вершинам в пределах базовой длины:

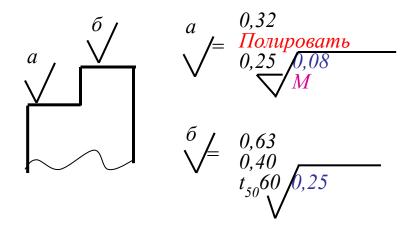
 $S = \frac{1}{n} \cdot \sum_{i=1}^{n} S_i$

• *Относительная опорная длина профиля* tp — отношение опорной длины профиля к базовой длине:

$$t_p = \eta_p / l$$

Полка знака

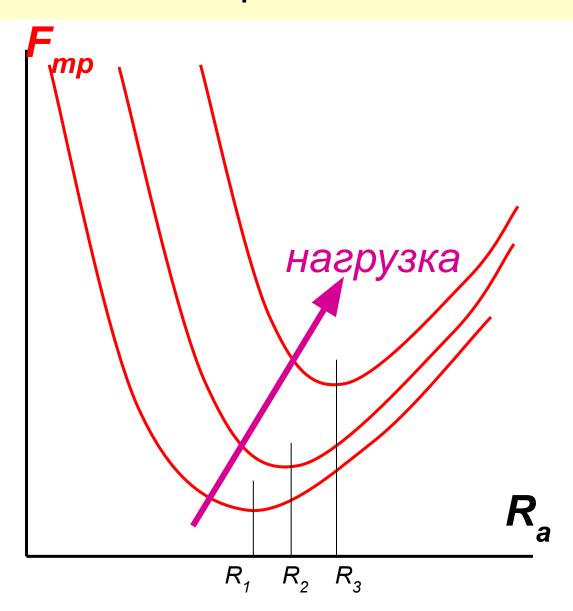

Вид обработки и (или) другие дополнительные указания Параметры шероховатости Базовая длина Обозначение направления неровностей

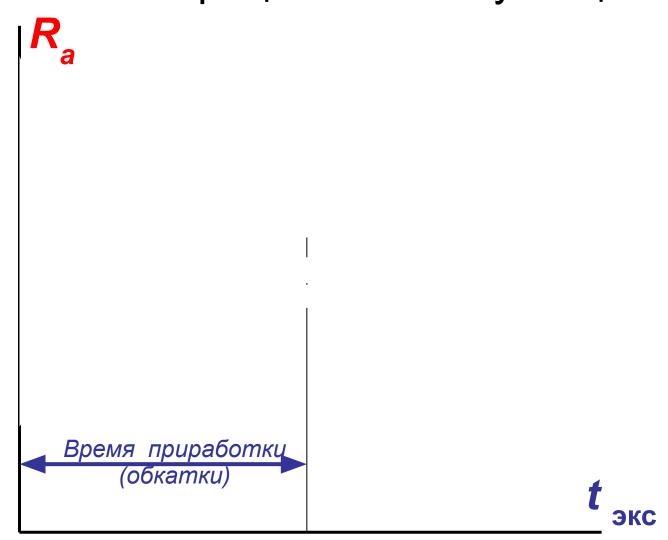

Структура обозначения шероховатости поверхности

$\bigtriangledown 5$

обозначение шероховатости поверхности по ОСТ до 1983 г

$$0.1\\ Sm0,063\\ 0,040\\ t_{50}80\pm10\%\\ 0,25$$




Направления неровностей поверхности ГОСТ 2789 – 73*

Типы направления неровностей	Схематическое изображение	Условное обозначение
Параллельное		<u></u>
Перпендикулярное		
Перекрещивающееся		X
Произвольное		<u></u>
Кругообразное		<u></u>
Радиальное		R

Влияние шероховатости на силу трения

Изменения шероховатости у пары трения в процессе эксплуатации

Шероховатость поверхности R_a (мкм) после различных видов и методов обработки

•	Отрезка резцом			80 - 25		
•	Приводной пилой		ой	50 - 25		
•	Обтачивание ч	ерновое		40 - 20		
•	ų	истовое		10 - 1,25		
•	Нарезание резі	ьбы пла	шкой	10 - 5		
•		рез	цом	5 -	1,25	
•	Шлифование	предва	арительн	ное 2,5	5 – 1,25	
•		тонкоє	9	1,25 —	0,63	
•	Суперфинишир	ование	чистово	e 0,0	4 - 0.01	
•	Притирка, довод	дка		0.08 - 0.01		
•	Полирование п	астой		0,32 - 0,02	<u> </u>	
•	Сверление		12,5	5 – 5		
•	Хонингование		0,63	3 - 0.01		