ructures

By Greg Felber

Lists

* An ordered group of items

* Does not need to be the same type
— Could put numbers, strings or donkeys in the same
list
* List notation
— A=[1,This is a list”, c, Donkey(“kong”)]

Methods of Lists

List.append(x)

— adds an item to the end of the list
List.extend(L)

— Extend the list by appending all in the given list L
List.insert(l,x)

— Inserts an item at index |

List.remove(x)

— Removes the first item from the list whose value is
X

Examples of other methods

a =[66.25, 333, 333, 1, 1234.5] //Defines List

— print a.count(333), a.count(66.25), a.count('x') //calls method
— 210 //output

a.index(333)

— //Returns the first index where the given value appears
— 1 //ouput

a.reverse() //Reverses order of list
— 23 //Prints list a

— [333,1234.5, 1, 333, -1, 66.25] //Ouput
a.sort()

— a //Prints list a

— [-1, 1, 66.25, 333, 333, 1234.5] //Output

Using Lists as Stacks

e The last element added is the first element retrieved

 To add an item to the stack, [
append() must be used

— stack =[3, 4, 5] _
— stack.append(6)
— Stackisnow [3, 4, 5, 6]
* To retrieve an item from the top of the stack, pop must
be used
— Stack.pop()
— 6 1s output
— Stack is now [3, 4, 5] again

>>> from collections import deque

>>> queue = deque (["Eric”, "John", "Michael”])

>>> queue.append("Terxry") # Terry arrives

>>> queue.append ("Graham") # Graham arrives

>>> queue.popleft () # The first to arrive now leaves
SEric!

>>> queue.popleft() # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival
deque (['Michael', 'Terry', 'Graham'])

List Programming Tools

* Filter(function, sequence)

— Returns a sequence consisting of the items from
the sequence for which function(item) is true

>>> def f(x): return x % 2 = 0 and X ¥ 3 =
filter(f, range (2

— n = " -~ " ™~

— Computes primes up to 25

Map Function

 Map(function, sequence)

— Calls function(item) for each of the sequence’s
items

— Computes the cube for the range of 1to 11

Reduce Function

e Reduce(function, sequence)

— Returns a single value constructed by calling the
binary function (function)

def add(x,v): return Xx

— Computes the sum of the numbers 1 to 10

2adh= [=X,. X, 66.25,.-333,.:333,.-1234.5]
>>> del a[0]

>>> a

(Y5 66255 383, 333, 123% .57

>>> del a[2:4]

>>> a

15 66525, 1234.5]

>>> del a[:]

>>> a

[]

Tuples

Tuple
— A number of values separated by commas

— Immutable

e Cannot assign values to individual items of a tuple
* However tuples can contain mutable objects such as lists

¥ &8
ct ot ¢t

}
/ N
|

}

/! N
1

I

n

N

)

)

>

)

-_.'< y - -

||_.__/':_, wIoed, ACLALO. |, L, <y _/, X p

— Single items must be defined using a comma
 Singleton = ‘hello,

Sets

An unordered collection with no duplicate
elements

Basket = [‘apple’, ‘orange’, ‘apple’, ‘pear’]
Fruit = set(basket)
Fruit

— Set([‘orange’, ‘apple’, ‘pear’])

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['ixv'] = 4127

>>> tel

{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys ()

[‘guido', 'irv', 'jack']

>>> 'guido' 1in tel

True

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
print k, v

gallahad the pure
robin the brave

>>> for i, v in enumerate(['tic', ‘'tac', 'toe']):
print i, v

0 tic
1 EAC
2 toe

>>> questions = ['name', 'quest', 'favorite color']

>>> answers = ['lancelot', 'the holy grail',
>>> for q, a in zip(questions, answers):

print 'What is your {0}? It is {1}.'.format(q,

What is your name? It is lancelot.
What is your quest? It is the holy grail.

What is your favorite color? It is blue.

'blue’]

a)

Comparisons

e Operators “in” and “not in” can be used to see
if an item exists in a sequence

e Comparisons can be chained
— a < b ==
* This tests whether a is less than b and that b equals ¢

