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Introduction to Quantum 
Mechanic 

A)  Radiation
B) Light is made of particles. The need for a quantification

1) Black-body radiation (1860-1901)
 2) Atomic Spectroscopy (1888-) 
3) Photoelectric Effect (1887-1905)

C) Wave–particle duality 
1) Compton Effect (1923).
2) Electron Diffraction Davisson and Germer (1925).
3) Young's Double Slit Experiment

D) Louis de Broglie relation for a photon from relativity
E) A new mathematical tool: Wavefunctions and operators
F) Measurable physical quantities and associated operators - 
Correspondence principle 
G) The Schrödinger Equation (1926)
H) The Uncertainty principle 



2

When you find this image,                you may 
skip this part                            

   This is less important
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The idea of duality is 
rooted in a debate over 
the nature of light and 
matter dating back to the 
1600s, when competing 
theories of light were 
proposed by Huygens 
and Newton. 

Christiaan Huygens 
Dutch  1629-1695
light consists of waves 

Sir Isaac Newton
1643 1727 
light consists of particles
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Radiations, terminology
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Interferences

Constructive Interferences Destructive Interferences

in
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Phase speed or velocity
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Introducing new variables

• At the moment, let consider this just a 
formal change, introducing

 
      and
                                     we obtain 
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Introducing new variables

At the moment, h is a simple constant
Later on, h will have a dimension and the p 

and E will be physical quantities 
Then
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2 different velocities, v and vϕ
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If h is the Planck constant J.s

Then 

Louis de BROGLIE
French
 (1892-1987)

Max Planck (1901)
Göttingen
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- Robert Millikan (1910) showed that it was quantified.

-Rutherford (1911) showed that the negative part was diffuse 
while the positive part was concentrated.

Soon after the
electron discovery in 1887
- J. J. Thomson  (1887) Some negative part could 
be extracted from the atoms
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Gustav Kirchhoff (1860). The light emitted by a black body is called black-body radiation]

black-body radiation

At room temperature, black bodies 
emit IR light, but as the 
temperature increases past a few 
hundred degrees Celsius, black 
bodies start to emit at visible 
wavelengths, from red, through 
orange, yellow, and white before 
ending up at blue, beyond which 
the emission includes increasing 
amounts of UV 

RED                                                WHITE
Small ν                                                 Large ν 

Shift of ν
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black-body radiation
Classical Theory
Fragmentation of the surface.
One large area (Small λ Large ν)         smaller pieces (Large λ Small ν)  
Vibrations associated to the size, N2 or N3
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Kirchhoff 

black-body radiation

RED                                                WHITE
Small ν                                                 Large ν 

Shift of ν
Radiation is emitted  when a solid 
after receiving energy goes back 
to the most stable state (ground 
state). The energy associated with 
the radiation is the  difference in 
energy between these 2 states. 
When T increases, the average 
E*Mean is higher and intensity 
increases.
 E*Mean- E = kT. 
k is Boltzmann constant (k= 1.38 
10-23 Joules K-1).
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black-body radiation

Max Planck (1901)
Göttingen

Why a decrease for small λ ?  
Quantification

Numbering rungs of ladder introduces quantum numbers (here equally spaced)
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Quantum numbers

In mathematics, a natural 
number (also called counting 
number) has two main 
purposes: they can be used for 
counting ("there are 6 apples on 
the table"), and they can be 
used for ordering ("this is the 
3rd largest city in the country").
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black-body radiation

Max Planck (1901)
Göttingen

Why a decrease for small λ ?  
Quantification
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black-body 
radiation, 
quantification

Max Planck

Steps too hard to climb                            Easy slope, ramp
Pyramid nowadays                                   Pyramid under construction
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Max Planck
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Johannes Rydberg 1888
Swedish 

n1 → n2 name Converges 
to (nm)

1  →  ∞ Lyman 91
2  →  ∞ Balmer 365
3 →  ∞ Pashen 821
4  →  ∞ Brackett 1459
5  →  ∞ Pfund 2280
6 →  ∞ Humphreys 3283

Atomic Spectroscopy

Absorption or Emission
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Johannes Rydberg 1888
Swedish 

IR

VISIBLE

UV

Atomic Spectroscopy

Absorption or Emission

Emission

-R/12

-R/22

-R/32

-R/42

-R/52
-R/62
-R/72

Quantum numbers n, levels are not equally spaced                  R = 13.6 eV
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Photoelectric Effect (1887-1905)
discovered by Hertz in 1887 and explained in 1905 by Einstein. 

Vacuum

Heinrich HERTZ 
(1857-1894) 

Albert EINSTEIN
(1879-1955) 
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Kinetic energy
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Compton effect 1923
playing billiards assuming λ=h/p

Arthur Holly Compton
American
 1892-1962



25

Davisson and Germer 1925

Clinton Davisson
Lester Germer
In 1927

Diffraction is similarly observed using a 
mono-energetic electron beam
Bragg law is verified assuming λ=h/p
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Wave-particle Equivalence.

•Compton Effect (1923).
•Electron Diffraction Davisson and Germer (1925)
•Young's Double Slit Experiment

In physics and chemistry, wave–particle duality is the concept that all matter and 
energy exhibits both wave-like and particle-like properties. A central concept of 
quantum mechanics, duality, addresses the inadequacy of classical concepts like 
"particle" and "wave" in fully describing the behavior of small-scale objects. Various 
interpretations of quantum mechanics attempt to explain this apparent paradox.

Wave–particle duality
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Thomas Young 1773 – 1829 
 English, was born into a family of Quakers. 

At age 2, he could read. 
At 7, he learned Latin, Greek and maths. 
At 12, he spoke Hebrew, Persian and could handle 
optical instruments. 
At 14, he spoke Arabic, French, Italian and Spanish, 
and soon the Chaldean Syriac. "… 
He is a PhD to 20 years "gentleman, accomplished 
flute player and minstrel (troubadour). He is 
reported dancing above a rope." 
He worked for an insurance company, continuing 
research into the structure of the retina, 
astigmatism ... 
He is the rival Champollion to decipher 
hieroglyphics.
He is the first to read the names of Ptolemy and 
Cleopatra which led him to propose a first alphabet 
of hieroglyphic scriptures (12 characters).
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Young's Double Slit Experiment

ScreenMask with 
2 slits



29

Young's Double Slit Experiment

This is a typical experiment showing the wave nature of light and interferences.

What happens when we decrease the light intensity ?
If radiation = particles, individual photons reach one spot and there will be no interferences

If radiation ≠ particles there will be no spots on the screen

The result is ambiguous
There are spots

The superposition of all the impacts make interferences
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Young's Double Slit Experiment

Assuming a single electron each time
What means interference with itself ?

What is its trajectory?
If it goes through F1, it should ignore the presence of F2

 

ScreenMask 
with 2 
slits
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Young's Double Slit Experiment
There is no possibility of knowing through which split the photon went!

If we measure the crossing through F1, we have to place a screen behind.
Then it does not go to the final screen.

We know that it goes through F1 but we do not know where it would go after.
These two questions are not compatible

 

ScreenMask 
with 2 
slits

Two important differences with classical physics:

• measurement is not independent from observer

• trajectories are not defined; hν goes through F1 
and F2 both!  or through them with equal 
probabilities!
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Macroscopic world:
A basket of cherries
Many of them (identical) 
We can see them and taste others
Taking one has negligible effect
Cherries are both red and good

Microscopic world:
A single cherry
Either we look at it without eating
It is red
Or we eat it, it is good
You can not try both at the same time
The cherry could not be good and red at 
the same time
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Slot machine “one-arm bandit”
After introducing a coin, you have 
0 coin or X coins. 
A measure of the profit has been 
made: profit = X
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de Broglie relation from relativity
Popular expressions of relativity:
m0 is the mass at rest, m in motion

E like to express E(m) as E(p) with p=mv

Ei + T + Erelativistic + ….
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de Broglie relation from relativity

Application to a photon (m0=0)

To remember

To remember
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Max Planck

Useful to remember to relate energy 

and wavelength
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A New mathematical tool: 
                             Wave functions and Operators

Each particle may be described by a wave function Ψ(x,y,z,t), real or complex,
having a single value when position (x,y,z) and time (t) are defined.
If it is not time-dependent, it is called stationary.
The expression Ψ=Aei(pr-Et) does not represent one molecule but a flow of 
particles: a plane wave
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Wave functions describing one particle

To represent a single particle Ψ(x,y,z) that does not evolve in time, Ψ(x,y,z) must 
be finite (0 at ∞).
 
In QM, a particle is not localized but has a probability to be in a given volume:
dP= Ψ* Ψ dV is the probability of finding the particle in the volume dV. 
Around one point in space, the density of probability is dP/dV= Ψ* Ψ 
 Ψ has the dimension of L-1/3  
Integration in the whole space should give one
Ψ is said to be normalized.
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Operators associated to physical quantities

We cannot use functions (otherwise we would end with classical mechanics)

Any physical quantity is associated with an operator.
An operator O is “the recipe to transform Ψ into Ψ’  ”
We write:         O Ψ = Ψ’ 
If O Ψ = oΨ  (o is a number, meaning that O does not modify Ψ, just a scaling 
factor), we say that Ψ is an eigenfunction  of O and o is the eigenvalue.
We have solved the wave equation O Ψ = oΨ by finding simultaneously Ψ and o 
that satisfy the equation.
o is the measure of O for the particle in the state described by Ψ.
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Slot machine (one-arm bandit)
Introducing a coin, you have 0 
coin or X coins. 
A measure of the profit has been 
made: profit = X

O is a Vending machine (cans)
Introducing a coin, you get one 
can. 
No measure of the gain is made 
unless you sell the can (return to 
coins)
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Examples of operators in mathematics : P parity

Even function : no change after x → -x 
Odd function : f changes sign after x → -x 

 y=x2 is even
 y=x3 is odd

 y= x2 + x3 has no parity: P(x2 + x3) = x2 - x3

Pf(x) = f(-x)
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Examples of operators in mathematics : A

y is an eigenvector; the eigenvalue is -1
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Linearity

The operators are linear:
O (aΨ1+ bΨ1) = O (aΨ1 ) + O( bΨ1) 
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Normalization

An eigenfunction remains an eigenfunction 
when multiplied by a constant

O(λΨ)= o(λΨ)  thus  it is always possible to 
normalize a finite function 

Dirac notations    <ΨIΨ>    
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Mean value

• If Ψ1 and Ψ2 are associated with the same 
eigenvalue o: O(aΨ1 +bΨ2)=o(aΨ1 +bΨ2)

• If not O(aΨ1 +bΨ2)=o1(aΨ1 )+o2(bΨ2)
we define ō = (a2o1+b2o2)/(a

2+b2)

Dirac notations
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Sum, product and commutation of 
operators(A+B)Ψ=AΨ+BΨ          

(AB)Ψ=A(BΨ)

-12--x d/dx

333x3

----4d/dx

y3=1/xy2=x2 y1=e4x

operators

wavefunctions

eigenvalues
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Sum, product and commutation of operators

-12--C= x d/dx

333B = x3

----4A = d/dx

y3=1/xy2=x2 y1=e4x

not compatible
operators

[A,C]=AC-CA≠0

[A,B]=AB-BA=0
[B,C]=BC-CB=0
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Compatibility, incompatibility of operators

-12--C= x d/dx

333B = x3

----4A = d/dx

y3=1/xy2=x2 y1=e4x

not compatible
operators

[A,C]=AC-CA≠0

[A,B]=AB-BA=0
[B,C]=BC-CB=0

When operators commute, the physical quantities 
may be simultaneously defined (compatibility)

When operators do not commute, the physical 
quantities can not be simultaneously defined 
(incompatibility)

compatible
operators
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x and d/dx do not commute, are incompatible

Translation and inversion do not commute, are incompatible
Translation vector

Inversion center
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Introducing new variables
Now it is time to give a physical meaning.
p is the momentum, E is the Energy
H=6.62 10-34 J.s
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Plane waves

This represents a (monochromatic) beam, a 
continuous flow of particles with the same 
velocity (monokinetic).

k, λ, ω, ν, p and E are perfectly defined
R (position) and t (time) are not defined.
ΨΨ*=A2=constant everywhere; there is no 

localization.
If E=constant, this is a stationary state, 

independent of t which is not defined.
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Niels Henrik David Bohr 
Danish
1885-1962 

Correspondence principle 1913/1920

For every physical quantity 
one can define an operator. 
The definition uses 
formulae from classical 
physics replacing quantities 
involved by the 
corresponding operators

QM is then built from classical physics in spite 
of demonstrating its limits
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Operators p and H

We use the expression of the plane wave 
which allows defining exactly p and E.
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Momentum and Energy Operators

Remember during this chapter
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Stationary state  E=constant

Remember for 3 slides after



56

Kinetic energy

Classical                               quantum operator

In 3D : 

Calling                                                                    the laplacian  

Pierre Simon, Marquis de Laplace 
(1749 -1827) 
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Correspondence principle
angular momentum

Classical expression                                          Quantum expression

lZ= xpy-ypx
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Erwin Rudolf Josef Alexander Schrödinger
Austrian 
1887 –1961 

Without potential    E = T
With potential E = T + V

Time-dependent Schrödinger  Equation 
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Schrödinger  Equation  for stationary states

Kinetic energy Total energy
Potential energy
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Schrödinger  Equation  for stationary states

H is the hamiltonian

Sir William Rowan Hamilton 
 Irish 1805-1865

Half penny bridge in Dublin

Remember
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Chemistry is nothing but an application of Schrödinger Equation (Dirac)

Paul Adrien Dirac 1902 – 1984
Dirac’s mother was British and his father was Swiss. 

< ΨI Ψ>   <Ψ IOI Ψ >

Dirac notations
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Uncertainty principle 

the Heisenberg uncertainty principle states that 
locating a particle in a small region of space 
makes the momentum of the particle uncertain; 
and conversely, that measuring the momentum of 
a particle precisely makes the position uncertain

We already have seen incompatible operators

Werner Heisenberg
German
1901-1976 
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It is not surprising to find that quantum mechanics does not predict the position 
of an electron exactly. Rather, it provides only a probability as to where the 
electron will be found. 
 We shall illustrate the probability aspect in terms of the system of an electron 
confined to motion along a line of length L. Quantum mechanical probabilities 
are expressed in terms of a distribution function.
For a plane wave, p is defined and the position is not.
With a superposition of plane waves, we introduce an uncertainty on p and we 
localize. Since, the sum of 2 wavefucntions is neither an eigenfunction for p nor 
x, we have average values.
With a Gaussian function, the localization below is 1/2π 
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p and x do not commute and are incompatible
For a plane wave, p is known and x is not (Ψ*Ψ=A2 everywhere)
Let’s superpose two waves…
      this introduces a delocalization for p and may be localize x

At the origin x=0 and at t=0 we want to increase the total amplitude,
 so the two waves Ψ1 and Ψ2 are  taken in phase
At ± Δx/2 we want to impose them out of phase
The position is therefore known for x ± Δx/2  
the waves will have wavelengths 
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Superposition of two waves

  

Δx/2

Δx/(2x(√2π))

Factor 1/2π a more realistic localization
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Uncertainty principle 

Werner Heisenberg
German
1901-1976 

A more accurate calculation localizes more
(1/2π the width of a gaussian) therefore one gets 

x and p  or E and t play symmetric roles 
in the plane wave expression;
Therefore, there are two main uncertainty principles


