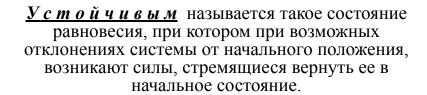
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра сопротивления материалов

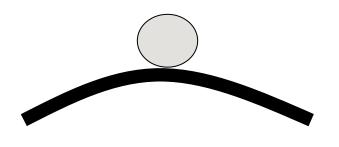
ЛЕКЦИЯ № 2С-7 Устойчивость элементов конструкций

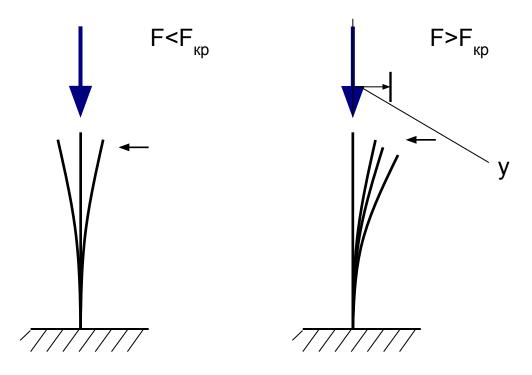
Сопротивление материалов

Слайды видеолекций для студентов технических направлений


Санкт-Петербургский государственный политехнический университет 2014

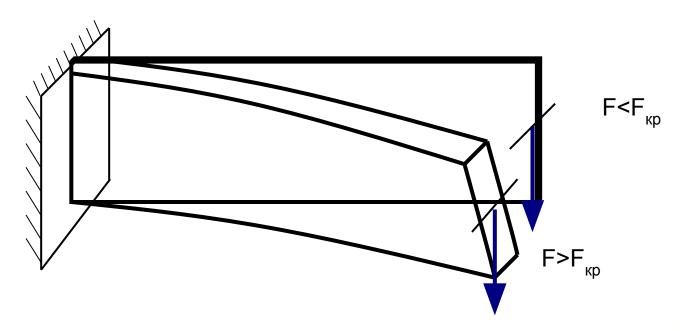
- Под устойчивостью понимают способность системы самостоятельно восстанавливать своё первоначальное состояние после устранения внешних возмущений.
- Если система такой способностью не обладает, то она называется неустойчивой.


Физические модели устойчивости



Безразличным называется такое состояние равновесия, когда при возможных отклонениях системы от начального положения не возникают силы стремящееся вернуть ее и не возникают силы стремящиеся удалить ее от исходного положения.

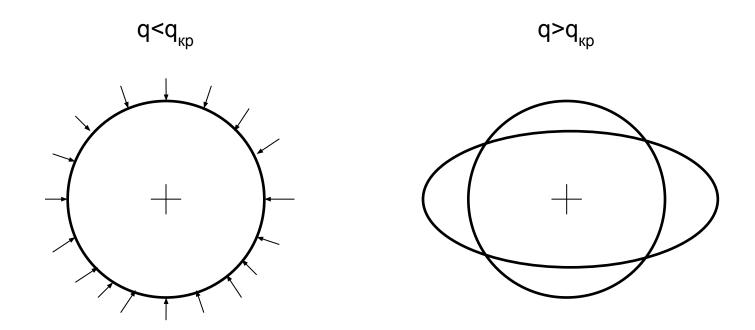
Неустойчивым называется такое состояние равновесия, при котором при возможных отклонениях системы от начального положения возникают силы, стремящиеся удалить систему от исходного состояния.


понятие устойчивости

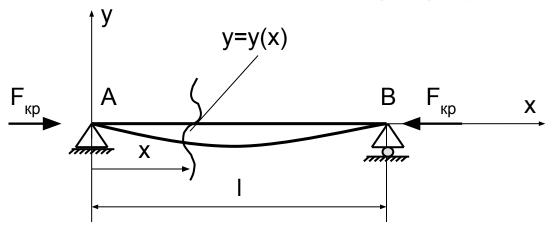
При F<F_{кр} исходная прямолинейная форма равновесия является единственной и устойчивой

При F>F_{кр} исходная прямая форма равновесия является неустойчивой, а устойчивой становится другая, изогнутая форма равновесия.

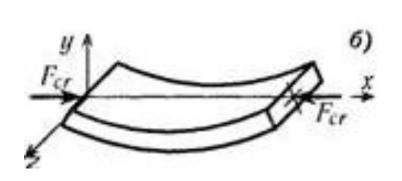
 Критическая сила – это такое наибольшее значение силы, при котором наряду с исходной формой равновесия имеет место хотя бы одна смежная, весьма близкая к ней другая форма равновесия.


С увеличением силы *F* стержень внезапно начинает изгибаться в горизонтальной плоскости с одновременным закручиванием, происходит потеря устойчивости плоской формы изгиба.

При $F < F_{\kappa p}$ устойчива плоская форма равновесия, при $F > F_{\kappa p}$ становится устойчивой форма равновесия с закручиванием.



Тонкостенная труба под наружным давлением q



При $q < q_{\kappa p}$ труба несколько уменьшает диаметр, оставаясь круговым цилиндром. При $q > q_{\kappa p}$ сечение трубы приобретает форму эллипса. С дальнейшим ростом давления q труба «сплющивается» вплоть до полного «схлопывания».

ЗАДАЧА ЭЙЛЕРА ПО ОПРЕДЕЛЕНИЮ КРИТИЧЕСКОЙ СИЛЫ ЦЕНТРАЛЬНО СЖАТОГО ПРЯМОГО СТЕРЖНЯ

Центрально сжатый стержень в момент потери устойчивости, когда $F=F_{_{\mathit{KP}}}$

$$EI_{min}y'' = M$$

$$\mathbf{M}_{\text{\tiny MSE}} = -\mathbf{F} \cdot \mathbf{y}$$

$$\Sigma I_{\min} y'' = -F$$

$$\mathbf{E}I_{\min}y'' = -F$$

$$k^2 = \frac{F}{EI_{min}}$$

тогда предыдущее уравнение принимает стандартную форму обыкновенного дифференциального уравнения второго порядка

$$y'' + k^{2}y = 0$$
$$y = C_{1} \sin kx + C_{2} \cos kx$$

Условия закрепления

$$y_{x=0} = 0 \qquad y|_{x=1} = 0$$

После подстановки получаем

$$C_2 = 0$$

$$C_2 = 0$$
$$C_1 \sin kl = 0$$

Уравнение имеет одно из двух решений

$$C_1 = 0$$

не подходит, т.к. дает у=0

$$\sin kl = 0$$

$$kl = n\pi$$

где
$$n = 1, 2, 3, ...$$

Подстановка k позволяет получить

$$F_{kp} = \frac{\pi^2 n^2 EI_{min}}{1^2}$$

Для нашего случая имеем
$$n = 1$$
, поэтому

$$F_{\kappa p} = \frac{\pi^2 E I_{\min}}{1^2}$$

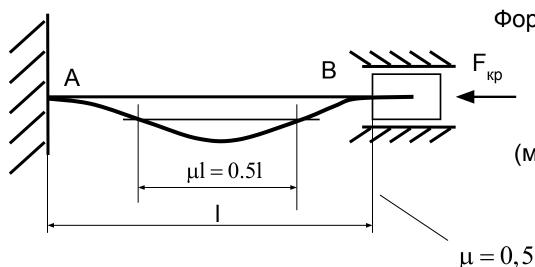
$$y = C_1 \sin kx + C_2 \cos kx$$

Заменим

$$kl = n\pi$$

$$y = C_1 \sin\left(\frac{n\pi x}{1}\right)$$

n=1 (полуволна синусоиды)

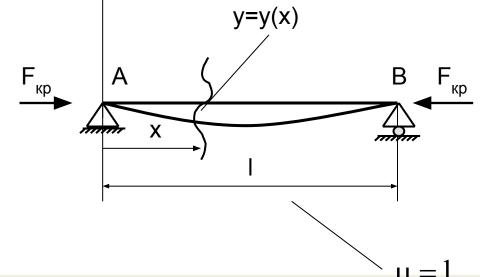


n=2 (две полуволны)

n=3 (три полуволны и т.д.)

n=4

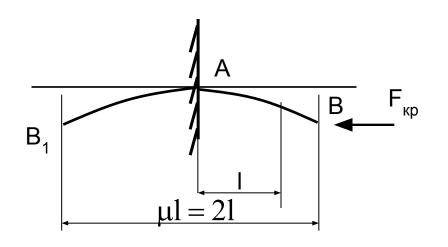
Зависимость критической силы от условий закрепления стержня



Форма изогнутой оси – полная волна синусоиды.

Выделим полуволну синусоиды (между точками перегиба) с длиной 0,5*l*.

Приведённая длина

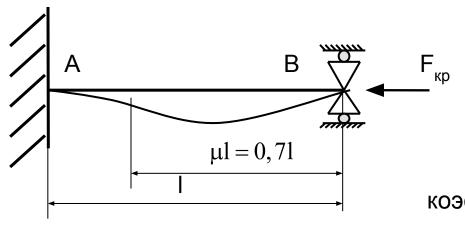

$$l_{\text{прив}} = \mu l$$

где *µ* – коэффициент приведения

$$F_{\text{kp}} = \frac{\pi^2 E I_{\text{min}}}{(l_{\text{прив}})^2} = \frac{\pi^2 E I_{\text{min}}}{(\mu l)^2}$$

Зависимость критической силы от условий закрепления стержня

Потеря устойчивости сжатого, заделанного с одной стороны стержня длины *I*, форма изогнутой оси – четверть волны синусоиды.


$$l_{\text{прив}} = \mu l = 21$$

коэффициент приведения

$$\mu = 2,0$$

Зависимость критической силы от условий закрепления стержня

Потеря устойчивости сжатого стержня, заделанного с одной стороны и шарнирно опёртого с другой.

коэффициент приведения

$$\mu = 0, 7$$

В случаях закрепления стержня промежуточными опорами с равным шагом имеем для коэффициента приведения

$$\mu = \frac{1}{n}$$

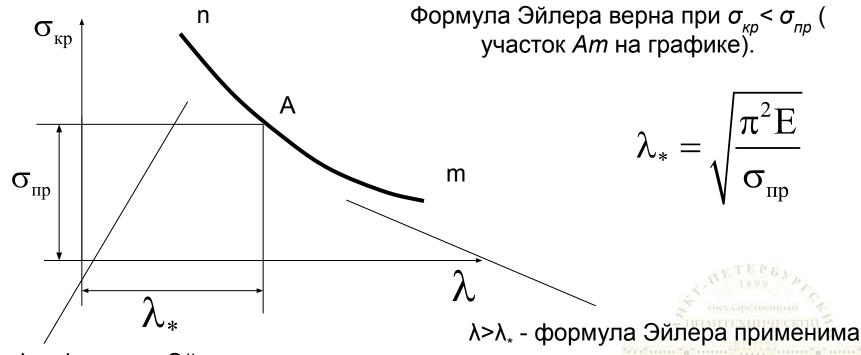
где n — число полуволн синусоиды, укладывающихся в полной длине стержня l.

ПРЕДЕЛЫ ПРИМЕНИМОСТИ ФОРМУЛЫ ЭЙЛЕРА

$$F_{kp} = \frac{\pi^2 EI_{min}}{(\mu l)^2}$$

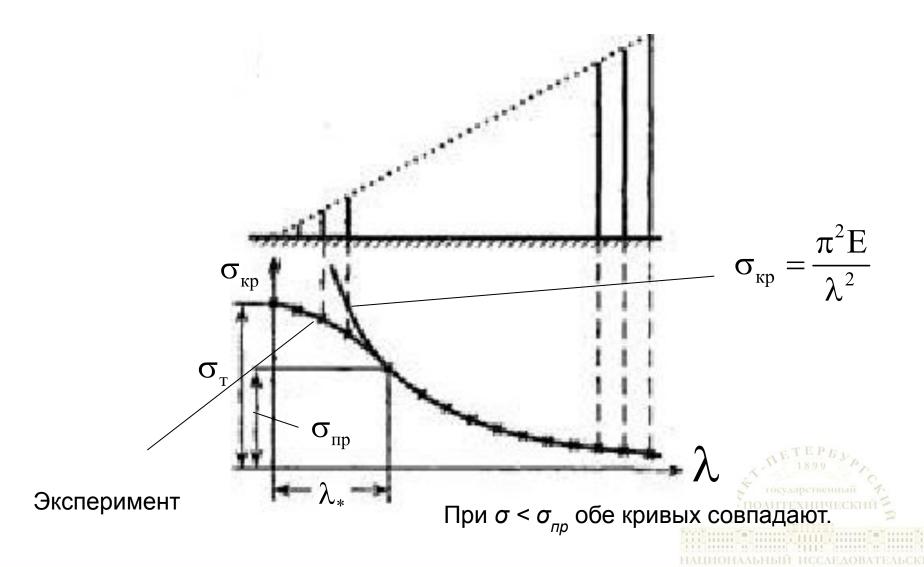
Разделим обе части равенства (/) на площадь поперечного сечения А

$$\sigma_{\kappa p} = \frac{F_{\kappa p}}{A} = \frac{\pi^2 E I_{\min}}{(\mu l)^2 A}$$


$$\sigma_{\kappa p} = \frac{\pi^2 E}{\left(\mu l\right)^2} \left(\frac{I_{\min}}{A}\right) = \frac{\pi^2 E}{\left(\mu l\right)^2} \left(i_{\min}\right)^2 = \frac{\pi^2 E}{\left(\frac{\mu l}{i_{\min}}\right)^2}$$

 i_{min} – так называемый *минимальный радиус инерции* поперечного сечения.

$$\lambda = \frac{\mu l}{i_{\min}}$$


$$\lambda = \frac{\mu l}{i_{\min}} \qquad \qquad \sigma_{\text{\tiny KP}} = \frac{\pi^2 E}{\lambda^2}$$

 χ_* - Гибкость, отвечающая равенству $\sigma_{\!\scriptscriptstyle \kappa p} \! = \sigma_{\!\scriptscriptstyle \Pi p}$

 $\lambda < \lambda_{\star}$ - формула Эйлера не применима

Экспериментальная проверка

При малых гибкостях (при $\lambda < \lambda_*$) найденные экспериментально значения σ_{np} приближаются либо к пределу текучести σ_m (для пластичных материалов), либо к пределу прочности на сжатие σ_{sc} (для хрупких материалов).

В стержнях малой гибкости в момент потери устойчивости развиваются пластические деформации в опасном сечении.

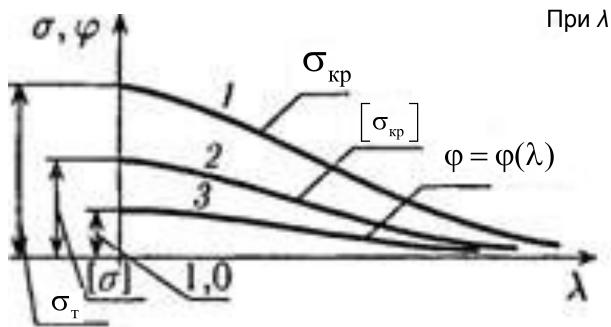
Критическая сила - сила, которую сжатый стержень ещё способен удержать при малых отклонениях от положения начальной прямолинейной формы равновесия.

РАЧЁТ НА ПРОЧНОСТЬ СЖАТОГО СТЕРЖНЯ С ПРИМЕНЕНИЕМ ТАБЛИЦ КОЭФФИЦИЕНТА СНИЖЕНИЯ ДОПУСКАЕМЫХ НАПРЯЖЕНИЙ

В качестве предельного напряжения принимают величину $\sigma_{_{\!\scriptscriptstyle K\!D}}$

$$\sigma = \sigma_{\text{пред}} = \sigma_{\text{кр}}$$

условие прочности


$$\sigma = \frac{F}{A} \leq [\sigma_{\kappa p}]$$

Допускаемое напряжение при расчётах на устойчивость $[\sigma_{_{\!\scriptscriptstyle K\!D}}]$ назначают как

$$[\sigma_{\kappa p}] = \frac{\sigma_{\kappa p}}{[s_{\kappa p}]}$$

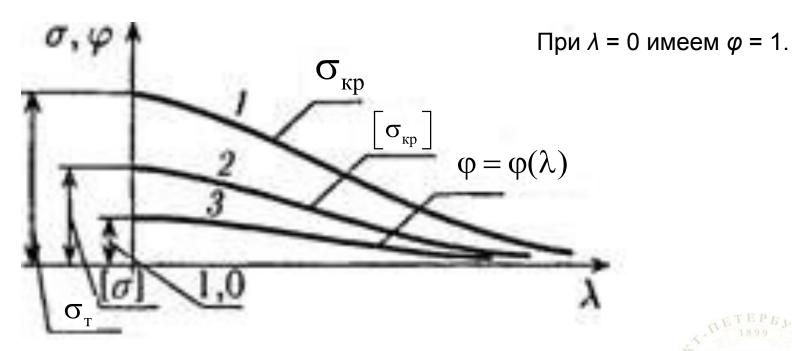
где $[s_{_{\!\mathit{KP}}}]$ – нормативный коэффициент запаса при расчётах на устойчивость.

Зависимость от гибкости λ критического напряжения $\sigma_{_{\!\kappa\!p}}$ и допускаемого напряжения $[\sigma_{_{\!\kappa\!p}}]$,

При λ = 0 получаем

$$\sigma_{_{\mathrm{K}p}}=\sigma_{_{\mathrm{T}}}$$

$$[\sigma_{\kappa p}] = [\sigma]$$


$$[\sigma] = \frac{\sigma_{T}}{[s]}$$

Коэффициента снижения основного допускаемого напряжения

$$\phi = \frac{\left[\sigma_{_{Kp}}\right]}{\left[\sigma\right]}$$

Так как $[\sigma]$ = const, а величина $[\sigma_{_{\!\mathit{KP}}}]$ зависит от λ , то получаем

 $\varphi = \varphi(\lambda)$

Увеличенные в 1000 раз коэффициенты ϕ снижения основного допускаемого напряжения (коэффициенты продольного изгиба) в зависимости от гибкости λ центрально сжатого стержня и от предела текучести для стали

Гибкость 2	Предел текучести $\sigma_{_{\!y}}$, МП a											
	200	240	280	320	360	400	440	480	520	560	600	640
10	988	987	985	984	983	982	981	980	979	978	977	977
20	967	962	959	955	952	949	946	943	941	938	936	934
30	939	931	924	917	911	905	900	895	891	887	883	879
40	906	894	883	873	863	854	846	849	832	825	820	814
50	869	852	836	822	809	796	785	775	764	746	729	712
60	827	805	785	766	749	721	696	672	650	628	608	588
70	782	754	724	687	654	623	595	568	542	518	494	470
80	734	686	641	602	566	532	501	471	442	414	386	359
90	665	612	565	522	483	447	413	380	349	326	305	287
100	599	542	493	448	408	369	335	309	286	267	250	235
110	537	478	427	381	338	306	280	258	239	223	209	197
120	479	419	366	321	287	260	237	219	203	190	178	167
130	425	364	313	276	247	223	204	189	175	163	153	145
140	376	315	272	240	215	195	178	164	153	143	134	126
150	328	276	239	211	189	171	157	145	134	126	118	111
160	290	244	212	187	167	152	139	129	120	112	105	099
170	259	218	189	167	150	136	125	115	107	100	094	089
180	233	196	170	150	135	123	112	104	097	091	085	081
190	210	177	154	136	122	111	102	094	088	082	077	073
200	191	161	140	124	111	101	093	086	080	075	071	067
210	174	147	128	113	102	093	085	079	074	069	065	062
220	160	135	118	104	094	086	077	073	068	064	060	057