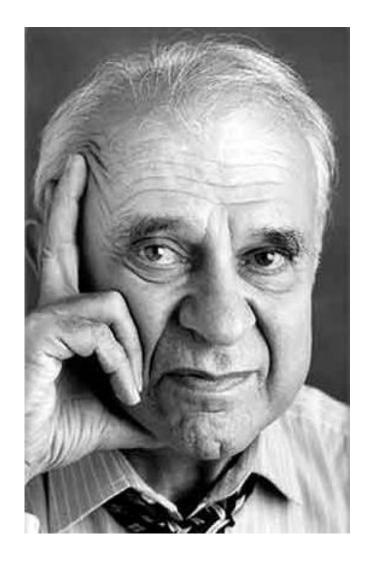
Модель межотраслевого баланса



Василий Васильевич Леонтьев, 1905-1999

Производящие отрасли	Потр	ебляющ	не отра	сли	Конечный продукт	Валовой про-		
	1	2		n				
1	x ₁₁	x ₁₂	•••	x_{1n}	<i>y</i> 1	X_{\downarrow}		
2	x ₂₁	x ₂₂		x_{2n}	Y2.	X ₂		
n	x_{n1}	x_{n2}	•••	Xm	Уn	X_n		
Условно- чистая про- дукция	Z_1	Z_2	***	Z_n	$\sum_{i=1}^{n} y_i = \sum_{j=1}^{n} Z_j$			
Валовой про- дукт	X_{\downarrow}	X ₂	•••	X _n		$\sum_{i=1}^{n} X_i = \sum_{j=1}^{n} X_j$		

		Текущее производственное потребление в отраслях (промежуточный продукт)						Конечный продукт						
		1	2		j		n	Mroro	Непроизводственное потребление	Фонд накопления	Возмещение выбытия основных фондов и возмещение потерь	Сальдо экспорга (+) и импорта (-)	Mroro	Всего валовой пропукции
	6		Первый раздел					35 NO -	Второй раздел					
Текущие магериальные этраты по видам продукции	1	<i>x</i> ₁₁	x ₁₂		x_{lj}		x_{ln}	$\sum_{j=1}^{n} x_{1j}$					<i>y</i> ₁	х
	1												ŧ	N N
	i	x_{i1}	<i>x</i> ₁₂		Xıj		Xin	$\sum_{j=1}^{n} x_{ij}$					y_i	X
	1												H	3
	n	x_{n1}	<i>X</i> _{n2}	•••	x_{nj}	•••	Xnn	$\sum_{j=1}^{n} x_{nj}$					y_n	x,
	Третий раздел						Четвертый раздел							
Амортиз и чистая продукци		z_1	Z ₂		Zj	C.C.	Z_R	$\sum_{j=1}^{n} z_j$		11				
Всего валовой продукт		x_1	<i>x</i> ₂	•••	x_j		Xn	$\sum_{j=1}^{n} x_{j}$					100 20	

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}$$

$$X_j = \sum_i x_{ij} + Z_j, j = 1, ..., n$$

$$X_i = \sum_j x_{ij} + Y_i, i = 1, ..., n.$$

$$\sum_{i=1}^{n} X_i = \sum_{j=1}^{n} X_j$$

$$x_{11} + x_{12} + \dots + x_{1n} + y_1 = X_1$$

$$x_{21} + x_{22} + \dots + x_{2n} + y_2 = X_2$$

$$\dots$$

$$x_{n1} + x_{n2} + \dots + x_{nn} + y_n = X_n$$
(1)

Обозначим a_{ij} количество продукции i - ой отрасли, расходуемое на производство единицы продукции в j - ой отрасли. Эти числа называются κo эффициентами прямых затрат, а все их множество образует квадратную матрицу $\left(a_{ij}\right)_{n \times n}$.

$$x_{ij} = a_{ij} X_{j}$$

$$a_{ij} = \frac{x_{ij}}{X_{i}}$$

$$|a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n + y_1 = X_1$$

$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n + y_1 = X_2$$

$$a_{n1}X_1 + a_{n2}X_2 + \ldots + a_{nn}X_n + y_n = X_n$$

$$AX + y = X$$

$$y = AX$$

$$\sum_{i=1}^{n} a_{ij} \leq 1 \text{ для } \forall \quad j = \overline{1, n},$$

$$a_{ij} < 1$$
 при $i = j$,

- 1. По заданному вектору совокупного общественного продукта найти вектор конечного общественного продукта: Y = (E A)X
- 2. По заданному вектору конечного общественного продукта определить вектор совокупного общественного продукта: $X = (E A)^{-1}Y$.

Матрица материальных затрат **A** называется *продуктивной*, если найдется такой план **X**, в котором выпуск каждой продукции строго положителен (все $x_j > 0$) и превышает совокупные затраты этой продукции в процессе производства. Таким образом, поэлементно выполняется неравенство:

$$X-AX > 0$$

При продуктивной технологической матрице существует хотя бы один план работы отраслей экономической системы, при котором каждого продукта выпускается больше, чем затрачивается на его производство.

Простейший критерий продуктивности и прибыльности, известный под названием условия Брауэра-Солоу, формулируется в терминах сумм коэффициентов матрицы технологических коэффициентов $A = (a_{ii})$ по строкам и столбцам. Данный критерий формулируется следующим образом: каждое из двух представленных условий является достаточным для продуктивности и одновременно для прибыльности:

1)
$$1 > \sum_{j=1}^{n} a_{ij}, \ \forall i = \overline{1, n};$$

2) $1 > \sum_{i=1}^{n} a_{ij}, \ \forall j = \overline{1, n}.$

2)
$$1 > \sum_{i=1}^{n} a_{ij}, \ \forall j = \overline{1, n}.$$

Теорема 1. Для того что бы модель межотраслевого баланса с матрицей коэффициентов прямых затрат A была продуктивной, необходимо и достаточно, чтобы матрица (Е-A) имела неотрицательную обратную матрицу.

Теорема 2. Технологическая матрица А является продуктивной тогда и только тогда, когда все ее собственные числа меньше 1:

$$\max(\lambda_A) < 1$$