Chapter 6

Introduction

- Electrochemistry is the study of electrical energy and chemical energy.
- Some chemical reactions produce electricity or electricity causes the reactions take place.
- In 1771 Luigi Galvani, Italian anatomist, discovered a new form of electricity could be produced by living tissue.
- In 1800's Italian physicist Alessandro Volta built a battery.

Oxidation-Reduction Reactions

- Electron transfer reactions are called oxidation-reduction or redox reactions.

Charges of elements are zero.
Sum of charges of elements in a compound is equal to zero.

- Oxidation is loss of electrons. (losing e)
- Reduction is gain of electrons. (taking e)
- Oxidizing agent is Oxidizes other element. (take electron)
- Reducing agent is Reduces other element.(loses electron)

Chapter 6 1. Oxidation-Reduction Reactions
 $\mathrm{Na} \rightarrow \mathrm{Na}^{+1}+1 e^{-}$oxidation
 $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-1}$ reduction

Here, Na is reducing agent, while Cl_{2} is oxidizing agent.

Chapter 6 1. Oxidation-Reduction Reactions

Example 1

Mg and O_{2} react to form MgO . What are the oxidizing and reducing agents?

Solution

$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
Mg undergoes oxidation process, it is called reducing agent.
O_{2} undergoes reduction process, it is called oxidizing agent.

Chapter 6 1. Oxidation-Reduction Reactions

1. Oxidation States

- Oxidation states of the elements must be known to balance redox reactions.
- Oxidation states of elements in most stable form is zero,
like Fe, $\mathrm{Cu}, \mathrm{Ag}, \mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{P}, \mathrm{S}, \mathrm{P}_{4} \ldots$. etc
- Group IA have +1, and Group IIA have +2 and Group IIIA have +3 , Halogens have -1 oxidation states.
- Hydrogen in metal hydrates has -1 oxidation state.
- Sum of the oxidation states in compounds is zero, in ions is equal to charge of ion.

Chapt

Find the oxidation state of metals in the following species.

$\begin{array}{llll}\text { A. } \mathrm{FeO} & \text { B. } \mathrm{KMnO}_{4} & \text { C. } \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} & \text { D. } \mathrm{HgOH}\end{array}$

Solution

A. $x+-2=0 \rightarrow x=+2$
B. $+1+x+4(-2)=0 \rightarrow x=+7$
C. $2(+1)+2 x+7(-2)=0 \rightarrow x=+6$
D. $x+(-2)+1=0 \rightarrow x=+1$

Chapt

Find the oxidation state of indicated atoms in the following species.
A. PO_{4}^{-3} B. CO_{3}^{-2}
C. $\mathrm{K}_{2} \mathrm{CrO}_{4}$
D. NH_{4}^{+1}

Solution

A. $x+4(-2)=-3 \rightarrow x=+5$
B. $x+3(-2)=-2 \rightarrow x=+4$
C. $2(+1)+x+4(-2)=0 \rightarrow x=+6$
D. $x+4(+1)=+1 \rightarrow x=-3$

