Химическая термодинамика: теоретическая основа биоэнергетики

Термодинамика - это отрасль науки, изучающая взаимные превращения различных видов энергии, связанные с переходом энергии в форме теплоты и работы.

Объектом термодинамического исследования есть термодинамическая система.

Система - совокупность объектов отделенных из окружающего мира реально существующими или воображаемыми поверхностями.

Системой может быть газ в сосуде, раствор реагентов в колбе, кристалл вещества или даже мысленно выделенная часть этих объектов.

По взаимодействию с окружающей средой термодинамические системы делят на:

открытые – обмениваются с окружающей средой веществом и энергией (например, живые объекты) Δ **m**≠**0**, Δ **E**≠**0**;

закрытые – обмениваются только энергией (например, реакция в закрытой колбе или колбе с обратным холодильником), наиболее частый объект химической термодинамики Δ **m=0**, Δ **E**≠**0**;

изолированные – не обмениваются ни веществом, ни энергией и сохраняют постоянный объем (приближение – реакция в термостате) $\Delta \mathbf{m} = \mathbf{0}$, $\Delta \mathbf{E} = \mathbf{0}$.

Система называется **гетерогенной**, если в системе есть реальные поверхности раздела, отделяющие друг от друга части системы, различающиеся по свойствам (насыщенный раствор с осадком),

Система называется **гомогенной** если таких поверхностей нет, (истинный раствор).

Гетерогенные системы содержат не менее двух фаз.

Первое начало термодинамики

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Свойства и состояние системы определяются ее физико-химическими параметрами.

В качестве термодинамических обычно выступают параметры которые могут быть измерены: температура, объем, концентрация.

Если система изменяет свои параметры, то в ней происходит **термодинамический процесс**.

Внутренняя энергия

Каждая термодинамическая система обладает определенным запасом энергии, которая называется **внутренней энергией**.

Внутренняя энергия системы Δ U - это общий запас энергии, который складывается из кинетической энергии движения ее составных частей (молекул, ионов, атомов, других частиц) и потенциальной энергии их взаимодействия без учета кинетической энергии системы в целом и потенциальной энергии ее положения

Величина внутренней энергии зависит от природы тела, его массы, химического состава и параметров, которые обусловливают состояние системы – давления, объема, температуры.

Запас внутренней энергии системы не исчерпаем и не поддается определению. Определена только внутренняя энергия атома водорода.

Для термодинамического анализа достаточно знать только прирост внутренней энергии.

$$\Delta U = U$$
 конеч - U начал

Первый закон термодинамики

- 1. Энергия не исчезает без следа и не возникает ни из чего, а только переходит из одного вида в другой в эквивалентном количестве.
- 3. Вечный двигатель первого рода невозможен, то есть периодически действующая машина, что дает работу, не расходуя энергии, невозможна.

Математическое выражение первого закона термодинамики:

$$Q = \Delta U + A$$

Подводимое к системе тепло идет на изменение внутренней энергии и на совершение работы.

Первый закон термодинамики при различных термодинамических процессах:

Изохорный - происходит при постоянном объеме (V=const) $A=p^*(V_2-V_1); \ \Delta V=0; \ A=0 \ o \ \mathbf{Q}=\Delta \mathbf{U}$

Изобарный - происходит при постоянном давлении (p=const) **Q**= Δ **U**+**p** Δ **V**

Изотермический- происходящий при постоянной температуре (T=const) ΔU =0 \rightarrow **Q=A**

Адиабатический- происходящий без обмена тепла с окружающей средой, система не получает тепла извне и не отдает его окружающей среде (Q = 0) – изолированная система $\mathbf{A} = -\Delta \mathbf{U}$

Изобарный процесс (p=const)

$$Q = \Delta U + p \Delta V$$

$$Q = (U_2 - U_1) + p(V_2 - V_1) = U_2 - U_1 + pV_2 - pV_1 = (U_2 + pV_2) - (U_1 + pV_1)$$

H ≡ U+pV – энтальпия – запас энергии при постоянном давлении, является функцией состояния, не зависит от пути процесса.
 Q=ΔH – все подводимое к системе тепло идет на изменение энтальпии (p=const).

$$\Delta H = \Delta U + p \Delta V$$
; $p \Delta V = \Delta n R T$

$$\Delta \mathbf{H} = \Delta \mathbf{U} + \Delta \mathbf{n} \mathbf{R} \mathbf{T}$$

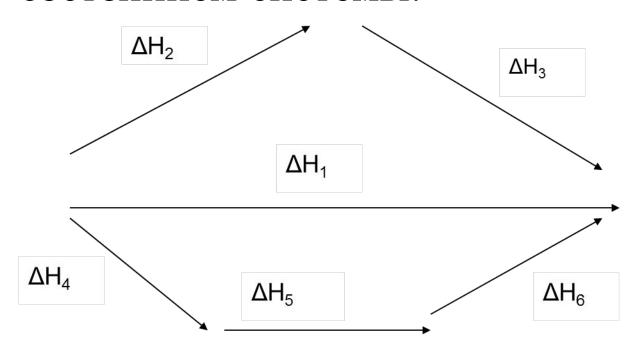
Термохимические уравнения:

Термохимическими называют уравнения в которых кроме формул исходных веществ и продуктов реакции со стехиометрическими коэффициентами указаны соответственны этим уравнениям тепловые эффекты (изменение энтальпии).

В термохимических уравнениях обязательно указывают агрегатное состояние исходных веществ и продуктов реакции.

Стехиометрические коэффициенты в термохимических уравнениях могут быть дробными.

$$C_{(T)}^{1} + H_{2}O_{(\Gamma)} = CO_{(\Gamma)} + H_{2(\Gamma)}; \Delta H_{r}^{0} = 132,0 \text{ кДж}$$
 $C_{(T)}^{1} + SO_{2(\Gamma)} = CO_{(\Gamma)}; \Delta H_{r}^{0} = -110,5 \text{ кДж}$


Тепловым эффектом химической реакции называют максимальное количество теплоты, которая выделяется или поглощается при постоянном объеме или давлении.

Тепловой эффект химической реакции при стандартных условиях (\Delta Hr_0) это тепловой эффект измеренный при температуре 298,15К и давлении 101,3 кПа.

Тепловой эффект при стандартных условиях рассчитывают по стандартным теплотам образования и сгорания.

Закон Гесса:

Тепловой эффект химической реакции не зависит от пути (механизма) ее течения, а только определяется начальным и конечным состоянием системы.

$$\Delta H_1 = \Delta H_2 + \Delta H_3 = \Delta H_4 + \Delta H_5 + \Delta H_6$$

Самостоятельно повторить пять следствий закона Гесса

Второе начало термодинамики

Процессы могут быть:

Термодинамически обратимым называется процесс, который можно реализовать в прямом и обратном направлениях при этом система возвращается в исходное состояние через промежуточные состояния равновесия не оставляя изменений в окружающей среде.

Необратимыми называют процессы, при которых в результате прямого и следующего за ним обратного перехода в системе или окружающей среде возникают какие либо неисчезающие изменения.

Теплота не может сама собой переходить от холодного тела к горячему, не оставляя изменений в окружающей среде.

Различные виды энергий стремятся превратится в теплоту, а теплота, в свою очередь, стремится рассеяться, то есть теплоту нельзя полностью превратить в работу – закон деградации (рассеивания) энергии.

В изолированной системе энтропия всегда возрастает

Энтропия

1) Энтропия есть мерой рассеянной (обесцененной) энергии.

Чем больше величина энтропии тем меньшая часть энергии может превратится в работу, то есть энтропия выступает как мера необратимости процесса.

Энтропия – функция состояния, ее изменение не зависит от пути процесса, а только от начального и конечного состояния системы

2) $S = \frac{Q}{T}$ - энтропия мера приведенного тепла (тепло, приходящееся на 1 град)

3) Энтропия- мера беспорядка, хаоса в системе.

Чем больше ∆Т, тем беспорядочнее тепловое движение частиц, следовательно больше S Sгазообр. > S жидк. > Sтверд. При абсолютном нуле частицы не двигаются S=0.

4) Энтропия- термодинамическая вероятность (W) существования системы.

S=klnW

Термодинамическая вероятность (W) – число микросостояний с помощью которого реализуется данное макросостояние.

В изолированной системе процесс протекает самопроизвольно только, если энтропия возрастает:

∆S≥0

В открытых и закрытых системах для определения самопроизвольности протекания процесса изменение энтропии и изменение внутренней энергии не являются критерием самопроизвольности — используют энергию Гиббса.

Свободная энергия Гиббса – функция состояния при **изобарно-изотермическом** процессе – это та часть энергии, которая может быть превращена в работу.

$$G = H - TS$$

$$G = U + pV - TS$$

$$G = \Delta H - T \Delta S$$

Процесс протекает самопроизвольно при $\Delta \mathbf{G} < \mathbf{0}$

(исключение: кинетические препятствия)

Химические реакции при ∆**G<0 – экзергоническими** (система совершает работу);

∆G>0 - эндергоническими

(над системой совершается работа).

Химическое равновесие

Обратимая реакция - химическая реакция, которая при одних и тех же условиях может идти в прямом и в обратном направлениях.

Необратимой называется реакция, которая идет практически до конца в одном направлении.

Химическое равновесие - состояние системы, в котором скорость прямой реакции равна скорости обратной реакции.

В состоянии химического равновесия $\Delta \mathbf{G} = \mathbf{0}$

Существует полезное соотношение, связывающее изменение свободной энергии Гиббса ΔG в ходе химической реакции с её константой равновесия K:

 $\Delta G = -RT \ln K$.

Вообще говоря, любая реакция может быть рассмотрена как обратимая (даже если на практике она таковой не является). При этом константа равновесия определяется как

$$K=k_{1} / k_{-1}$$

где k_1 — константа скорости прямой реакции, k_{-1} — константа скорости обратной реакции.

Если

I.
$$H_2$$
 (г) $+ I_2$ (т) $\rightleftharpoons 2HI$ (г), $\Delta G^\circ = +1.6$ кДж/моль II. Hb (р) $+ O_2$ (г) $\rightleftharpoons HbO_2$ (р), $\Delta G^\circ = -11$ кДж/моль III. $C_6H_{12}O_6$ (т) $+6O_2$ (г) $\rightleftharpoons 6CO_2$ (г) $+6H_2O$ (ж), $\Delta G^\circ = -2880$ кДж/моль

Реакции I и II – обратимы, Реакция III – необратимы (при данных условиях)

Однако, например, реакция III окисление глюкозы кислородом становится обратимой в листьях растений при освещении.