©J UNIVERSITY

NUFYP Mathematics

Lecture 2.2
Modelling with
Exponentials and Logarithms

Rustem Iskakov




Uonien D Foundation Year Program,
Lecture Outline

« Graphs of transformed Exponential functions

Graphs of transformed Logarithmic functions

Mathematical modelling

Exponential Growth and Decay

Modelling with Exponential and Logarithmic
functions




©) UNIVERSITY

Introduction

Mathematical models

Modelling using Exponents and Logarithms

Often data does not fit to a linear or other
polynomial function. When this happens there
are some functions such as Exponential and
Logarithmic functions that are used to model
phenomena occurring in nature.
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Mathematical models

1. Exponential Growth 2. Exponential Decay
Time Time since eruption
— bx —bx
y=axe y=axe
Used to model: Used to model:
* Population growth * Radioactive decay

* Compound interest e (Carbon dating
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Mathematical models

3. Logarithmic Growth 4. Logistic Growth

Carrying capacity

y=a+blnx

2
y=a+blogx
0/ 2 4 6

-2

Population size

Time

y=a+ b *In(x) o a

y=a+bxlog(x) YT 1+ be
Used to model: Used to model:
 Earthquakes * Spread of disease

e Sound levels * Learning
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Mathematical models

5. Gaussian distribution (Normal distrib.)

Equation:

(Gaussian or
"normal”

distribution

y = a* e—(x—b)*/c

1(X) Used to model:
* Probability
distribution
0013:5 1:'13591:'34135'3413:1'135%‘ 1.99135 e Standardized
80 20 o g c 20 3o test (SAT)
marks
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Mathematical models

1. Exponential Growth

Note: In this
2. Exponential Decay lecture we will
focus only on

3. Logarithmic Model these 3 models

4. Logistic Growth

5. Gaussian Distribution (Normal Distribution)
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Introduction to “e”

Mathematical constant e 1s a real, irrational and
transcendental number approximately equal to:

e =2.71828 18284 59045 23536 02874 71352 66249 77572 47093 6999595749

66967 62772 40766 30353 54759 45713 82178 53516 6427427466 39193 20030

59921 81741 35966 29043 57290 03342 9526059563 07381 32328 62794 34907
63233 82988 07531 95251 01901 ...

A transcendental number 1s a number that is not a root of any
polynomial with integer coefficients. They are the opposite of algebraic
numbers, which are numbers that are roots of some integer polynomaal.

Do you know any other transcendental number? Answer: 1
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“e” is almost everywhere

= ge*?P

The logarithmic spiral 1s a shape that appears in nature, and 1s found 1n
such places as shells, horns, tusks, sunflowers, and even spiral galaxies.
However, despite the aesthetic wonders of the number, it was actually
first discovered 1n a pragmatic financial investigation of the behavior
of compound interest.
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2.2.1 Sketch graphs of transformed exponential
functions

Let’s sketch graphs of transformed exponential functions
such as: Horizontal

caling factor,
a + b x e CKanle factor 1/c

y —
Vertical /
translation Horizontal
Vertical scaling factor, scale translation
factor b

We assume that a, b, ¢ and d are real constants and that x 1s
the independent variable.
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Let us see some examples:
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Let us see some examples:

Are there any Asymptotes?
y=e*

4 /




INl NAZARBAYEV
chivigeid
Let us see some examples:

Are there any Asymptotes? HA: y=0

y=€ as X—>—o0
/
4

) 0 2

Note: HA (Horizontal asymptote )
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Vertical translation

|
:
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Vertical stretch
2¢- (0,2) //

W i (0,0.5)
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Horizontal translation

Hf
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Horizontal stretch
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Reflection in the y-axis (Horizontal)

\
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Reflection in the x-axis (Vertical)
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Your turn!
Match function with its graph

207
3. y=3+ez" 15

10

Computed by Wolfram |Alpha
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Your turn!
Match function with its graph

1. y=e” e
2. y=e* I
3. y=3+ez" 15
10 .
5‘- - = (‘.:\f
— - — — : s (‘2 '\
....... «m—ﬁﬁ " PR B > -
-3 =3 =1 0 1 2 g: e 3

Computed by Wolfram |Alpha
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Your turn!
Match function with its graph

Computed by Wolfram |Alpha
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Your turn!
Match function with its graph

Computed by Wolfram |Alpha
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Have you noticed that we are now
dealing with only base “e”?

!

y = a + be*

What is the reason for us to use only
base “e”?
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1. How to relate 2* to &*

©0.1)
:,4

2. What kinnd of tra}wsformation shou‘d be apr;lied toe*?




© UNIVERSITY

Answer: we need to apply horizontal stretch, 1.e. and
introduce a coefficient ¢

ZX= eCX

2=¢e€

In2 = Ine©
c=In2=0.693...
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(0.1) | | | (0. 1)
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That is why in Exponential growth and decay
models we use directly “e” number that can be

tuned up to any numerical exponential number
by horizontal stretch!
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2.2.2 Sketch graphs of transformed natural
logarithmic functions

Let’s sketch graphs of transformed exponential functions

such as: Horizontal

S
y=a + b * ln(cx - d) scaling factor,

/ scale factor 1/c
Vertical /

translation . .
Vertical scaling factor, scale

factor b Horizontal

translation

We assume that a, b, ¢ and d are real constants and that x 1s
the independent variable.
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Let us see some examples:
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Vertical translation

Are there any Asymptotes? VA: x = 0

/

4

(1,3)

T y=Inx+3

e

as x—>0

//’//”

/

4 6

/f””/

/

(1.-3)
|

y=Inx—3

Note: VA iVerticaI asimﬁtote i
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Vertical stretch
> | Y 4
/ﬂ
1 //
= = Inx
(1.0)




2
21
ok
35
< Z
Z =
2

Horizontal translation

Asymptotes
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Horizontal stretch

—
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Reflection in the y-axis (Horizontal)

4
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Reflection in the x-axis (Vertical)

~ |
2
1




© UNIVERSITY

Let us see some examples:

1. y=Inx 2. y=In(-x) 3.

Computed by Wolfram|Alpha Computed by Wolfram |Alpha Computed by Wolfram|Alpha

4. y=-In(3-x) 5. y=2-In(3-x)

-6

Computed by Wolfram |Alpha Computed by Wolfram|Alpha
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Your turn!
Match function with its graph
1. y=Inx
. y=In(2x)
3. y=2+In(2x)

N

(x from =1 to 3)

Computed by Wolfram |Alpha
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2.2.3 Interpret and perform calculations with
Exponential Growth and Decay models

Exponential Growth vs Exponential Decay

Population size
Temperature of lava

Time N Ote t h i S Time since eruption

difference\
y:a*ebx y:a*e_bx
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Example 1 Decay model

The price of a used car can be represented by the formula

t

P =16000e 10

where P 1s the price in £'s and t is the age in years from new

Calculate:

a. The new price
b. The value at 5 years old car
c. What the model suggests about the eventual value of the car

Use this to sketch the graph of P against .
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Solutions:

‘ )

a Substitute t =0 into P=16000e¢ J|

=16 000 X 1
The new price is £16 O00.

b Substitute t i 5 into P =16 000 ¢~ 10

]

=16000¢e 2
= £9704.49

The price after 5 years is £9704.49.

¢ Ast 1_> o0, 6‘% -0 For the eventual value, let t — =,
Therefore F— 16 OO0 X O = O.

The eventual value is zero.

p
16 000

Use the values from parts a, b and ¢ to
sketch the graph.

b 4
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Your turn (Example 2 Growth model)

The exponential growth of a colony of bacteria can modeled by he
equation A=60e"%Y where, ¢ is the time in hours from which the
growth is recorded (t>0)

a. Work out the 1nitial population of bacteria.

b. Predict the number of bacteria after 4 hours.

c. Predict the time taken for the colony to grow to 1000.
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Solutions: . .
A=60¢0-030 c. After what time t will the
number of bacteria be A=10007?
a. Initial population 1000=A= 60930

A= 60e""=60e"=60 bacteria  L0.030— 1¢ 67

Ine®B®=1n 16.67
0.03t=2.8134
t=93.8 hours

b. When t=4
A= 60e*P3® =~ 60%1.1274...
A =~ 68 bacteria
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Example 3 Decay model

Polonium-210 has a half-life of 140 days. Suppose a sample of this
substances has a mass of 300mg.

a. Find a function m(t) = my2~t/" that models the mass remaining
after t days.

b. Find a function m(t) = mye ™" that models the mass remaining
after t days.

c. Find the mass remaining after one year.
d. Draw a graph of the sample mass as a function of time.

Half—life 1s the time required for a quantity to reduce to half
its 1nitial value.
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t

Solutions: b. 2 155 = o-Tt
t
- t
a.m(t) =mo2 * In27 140 = lne~ "t
my _io
T=m02 h U R
L. 280 140 .
g =& r ~ 0.00495  m(t) = 300e
1 _140 365
log, 5 = log,2 h c. m(365) = 300 * 2 120 ~49.24
140 mit) A
= = e—— d. ]
1 i 20
h = 140 ?% S m(t) = 300 00045
L : 10
m(t) = 300 = 27140 g o
0 » Time ((;z?)(/)s) r
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Your turn (Example 4 Decay model)

The concentration, C of a drug in the blood stream, t hours after
taking an initial dose, decreases exponentially according to

C = A(e™*), where A and k are constants. If the initial
concentration 1s 0.72 and this halves after 5 hours, find the values
of A and k and sketch a graph of C against t.
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Solutions:

When t=0; C=0.72 Sk — % — 2
0.72 = A(e **°)

0.72=A In ek = [n2
When t=5; C=0.36 k = m?z ~ 0.14
0.36 = 0.72(e**5) C = 0.72(e01%)
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Solutions:
C = 0.72(8_0'14*t)

1 g—
(0,072)
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2.2.4 Solve applications involving Exponential and
Logarithmic functions

Example 5 (Law of forgetting)

If a task 1s learned at a performance level Py, then after a time
interval ¢ (in months) the performance level P staisfies

logP =logPy, — clog(t + 1)
where c 1s a constant that depends on the type of task.

If your score on a mathematics test is 90, what score would you
expect to get on a similar test (Assume that ¢ 1s 0.2 ):

a. After two months?

b. After a year?
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Solutions:
logP =logPy — clog(t + 1)
logP = log Py — log(t + 1)¢
_ 0
logP = log(t T 1)
p—_10
(t:4+1)¢
a. After two months. b. After a year.
P(2) 00 72 P(12) 00 54
@2+ 1)02 (12 + 10z
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Example 6 (Magnitude of earthquake)

The magnitude of the earthquake can be measured in Richter scale
using: M = logé

where [ 1s the intensity of the earthquake and S is the mtensity of
“standard” earthquake.

The 1906 earthquake in San Francisco had an estimated magnitude of
8.3 on the Richter scale. In the same year a powerful earthquake
occurred on the Columbia-Ecuador border that was four times as
intense. What was the magnitude of the Columbia-Ecuador
carthquake on the Richter scale?
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Solutions:

If I 1s the intensity of the San Francisco earthquake, then
from the definition of the magnitude we have

M=log= =83
= log s =8
Intensity of Columbia-Ecuador earthquake I., = 41

fee _

l 4&—1 4+ &—l 4+83~89
S ogS—og ogS—og 3 =~ 8.

M = log
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Your turn (Example 7)

The 1989 Loma Prieta earthquake that shook San Francisco had a
magnitude of 7.1 on the Richter scale. How many times more intense

(in other words find Il—z) was the San Francisco earthquake in 1906

than the Loma Prieta’s earthquake in 19897
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Solutions:

I 1s the magnitude of the San Francisco earthquake.
I; 1s the intensity of the Loma Prieta earthquake.

According to the question we are required to find I—S
L

logS—10g'L
=10 gs 9s — 10MS—ML — 108.3—7.1 — 101.2

~ 16 times
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Learning outcomes

At the end of this lecture, you should be able to:
2.2.1 Sketch the graphs of transformed Exponential functions

2.2.2 Sketch the graphs of transformed Logarithmic functions

2.2.3 Interpret and perform calculations with Exponential

Growth and Decay models

2.2.4 Solve applications involving Exponential and Logarithmic

functions
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Preview activity 1: Trigonometry

Watch this video

https://www.youtube.com/watch?v=T9ltcMZ
KLck
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Preview activity 2: Trigonometry

A measuring wheel with a radius of 25cm is used

to measure a 30m distance. Calculate the angle in

Rad, and find the number of full rotation it has to
do?




