
ASN.1 & BER

ASN.1

Purpose of ASN.1
One of the fundamental problems confronting

users communicating with different systems is
the efficient transfer of data in such a way that
the data received is the same data transmitted.
In the OSI model, the representation of data
types and structures to facilitate this transfer is a
function of the Application Layer; the encoding of
the data into a specific sequence of bits for
transfer isattributed to the Presentation Layer.

The fundamental unit of ASN.1 is the
module. The sole purpose of a module is
to name a collection of type definitions
and/or value definitions (assignments) that
constitute a data specification.

ASN.1

A type definition is used to define and name
a new type by means of a type assignment
and a value definition is used to define and
name a specific value, when it is necessary,
by means of a value assignment.

ASN.1

A type assignment consists of a type
reference (the name of the type), the
character sequence ::= (‘‘is defined as’’),
and the appropriate type.

ASN.1 - Type Assignment

InventoryList {1 2 0 0 6 1} DEFINITIONS ::=
BEGIN

{
ItemId ::= SEQUENCE

{
partnumber IA5String,
quantity INTEGER,
wholesaleprice REAL,
saleprice REAL
}

StoreLocation ::= ENUMERATED
{
Baltimore (0),
Philadelphia (1),
Washington (2)
}

}
END

ASN.1 – Type Assignment
example

A value assignment consists of a value
reference (the name of the value), the
type of the value, ::= (``is assigned the
value''), and a valid value notation. A value
reference must begin with a lower case
letter, but otherwise has the same syntax
as a type assignment.

ASN.1 - Value assignment

gadget ItemId ::=
{

partnumber "7685B2",
quantity 73,
wholesaleprice 13.50,
saleprice 24.95

}

ASN.1 - Value assignment
example

{
ItemId ::= SEQUENCE
 { partnumber

IA5String,
quantity INTEGER,
wholesaleprice REAL, saleprice REAL

}

ASN.1 – Simple Types

ASN.1 – Character String Type

ASN.1 – Structured types

{
"American", "1106", { 320, 107, 213 }, { "BWI", "LAX" }, 10

}

AirlineFlight ::= SEQUENCE
{
airline IA5String,
flight NumericString,
seats SEQUENCE

{
maximum INTEGER,
occupied INTEGER,
vacant INTEGER
},

airport SEQUENCE
{
origin IA5String,
stop1 [0] IA5String OPTIONAL,
stop2 [1] IA5String OPTIONAL,
destination IA5String
},

crewsize ENUMERATED
{
six (6),
eight (8),
ten (10)
},

cancel BOOLEAN DEFAULT FALSE
}

ASN.1 – Structured types
example

Type TAGGED is used to enable the
receiving system to correctly decode
values from several datatypes that a
protocol determines may be transmitted at
any given time. TAGGED has no value
notation of its own. Its type notation
consists of three elements: a user-defined
tag, possibly followed by IMPLICIT or
EXPLICIT, followed by the value notation
of the type being tagged.

ASN.1 – Tagged

The user-defined tag consists of a class and class number contained in
braces. Class is

 UNIVERSAL, APPLICATION, PRIVATE, CONTEXT-SPECIFIC.
The UNIVERSAL class is restricted to the ASN.1 built-in types. It

defines an application-independent data type that must be
distinguishable from all other data types. The other three classes are
user defined.

The APPLICATION class distinguishes data types that have a wide,
scattered use within a particular presentation context.

PRIVATE distinguishes data types within a particular organization or
country.

CONTEXT-SPECIFIC distinguishes members of a sequence or set, the
alternatives of a CHOICE, or universally tagged set members.

Only the class number appears in braces for this data type; the term
COONTEXT-SPECIFIC does not appear.

ASN.1 – Tagged

ASN.1 – Tagged

As we indicated in the above discussion of type SET, the
representation in a) is invalid in ASN.1 because its
instances can be ambiguous.

The tagging in representations b), c), and d) overcome the
problem and allow instances to be transmitted uniquely.

IMPLICIT in c) indicates that an original tag is replaced by
any of the three user-defined tags.

EXPLICIT tagging would be appropriate when
strong-type-checking is more important than compact
representation; it can be used when the original tag is
accompanied by a user-defined tag.

The context-specific tagging in d) is similar to the
APPLICATION class tagging in b) except that the class
of the tag is not specifically transmitted.

ASN.1 – Tagged

ASN.1 – Listing of Universal Tags

ASN.1 – Listing of Universal Tags

ASN.1 – Listing of Universal Tags

Abstract Syntax und Transfer
Syntax

Задача

Дефиниране на типове данни за следния
обект:

LAN – мрежова карта:
- Индекс : 0
- Производител : 3Com
- Получени пакети: 521
- Изпратени пакети: 130

Type assignments

Value assignments

LAN – Network Card Interface

BER - кодиране

End - LABEL

Next Byte gives Tag

Type Datatype Tag Number
00: Universal 0: simple 0 .. 30
01: Application 1: structured 31: next Byte gives Tag Number
10: Context Specific
11: Private

BER - кодиране

81
80
62

02
A1

16
02

A0
60

BER - кодиране
LAN – Network Card Interface

BER - кодиране

